<span>Use the formula: r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ] where k = 0,1,2,3,4
</span><span>First 5th root:
k = 0
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*0)/5 ) + i*sin( (280+360*0)/5 ) ]
2*[ cos( (280+360*0)/5 ) + i*sin( (280+360*0)/5 ) ]
2*[ cos( (280+0)/5 ) + i*sin( (280+0)/5 ) ]
2*[ cos( 280/5 ) + i*sin( 280/5 ) ]
2*[ cos( 56 ) + i*sin( 56 ) ]
-------------------------------------------------------------------
Second 5th root:
k = 1
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*1)/5 ) + i*sin( (280+360*1)/5 ) ]
2*[ cos( (280+360*1)/5 ) + i*sin( (280+360*1)/5 ) ]
2*[ cos( (280+360)/5 ) + i*sin( (280+360)/5 ) ]
2*[ cos( 640/5 ) + i*sin( 640/5 ) ]
2*[ cos( 128 ) + i*sin( 128 ) ]
-------------------------------------------------------------------
Third 5th root:
k = 2
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*2)/5 ) + i*sin( (280+360*2)/5 ) ]
2*[ cos( (280+360*2)/5 ) + i*sin( (280+360*2)/5 ) ]
2*[ cos( (280+720)/5 ) + i*sin( (280+720)/5 ) ]
2*[ cos( 1000/5 ) + i*sin( 1000/5 ) ]
2*[ cos( 200 ) + i*sin( 200 ) ]
-------------------------------------------------------------------
Fourth 5th root:
k = 3
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*3)/5 ) + i*sin( (280+360*3)/5 ) ]
2*[ cos( (280+360*3)/5 ) + i*sin( (280+360*3)/5 ) ]
2*[ cos( (280+1080)/5 ) + i*sin( (280+1080)/5 ) ]
2*[ cos( 1360/5 ) + i*sin( 1360/5 ) ]
2*[ cos( 272 ) + i*sin( 272 ) ]
-------------------------------------------------------------------
Fifth 5th root:
k = 4
r^(1/n)*[ cos( (theta+360*k)/n ) + i*sin( (theta+360*k)/n ) ]
(32)^(1/5)*[ cos( (280+360*k)/5 ) + i*sin( (280+360*k)/5 ) ]
(32)^(1/5)*[ cos( (280+360*4)/5 ) + i*sin( (280+360*4)/5 ) ]
2*[ cos( (280+360*4)/5 ) + i*sin( (280+360*4)/5 ) ]
2*[ cos( (280+1440)/5 ) + i*sin( (280+1440)/5 ) ]
2*[ cos( 1720/5 ) + i*sin( 1720/5 ) ]
2*[ cos( 344 ) + i*sin( 344 ) ]</span>
Your answer is 1<sqrt181<181
Answer:
7/35
Step-by-step explanation:
Part 1
1. 16-composite
2. 0- Neither
3. 29- prime
4. 33- composite
5. 47- prime
6. 51- composite
7. 64- Composite
8. 73- prime
9. 12- Composite
10. 24- Composite
11. 17- prime
12. 38- composite
The answer would be 18+54 because when you distribute the 6 to the numbers that are inside the parenthesis (6*3=18 6*9=54) When you add 18 and 54 together I would get 72. 18+54 is 72. 18+9 is 27. 9+15 is 24. 6+54 is 60. Pick the one that gives you an answer of 72 which was 18+54. I hope this helped you!