Please be a little specific.
Answer:
μ = 235.38
σ = 234.54
Step-by-step explanation:
Assuming the table is as follows:
![\left[\begin{array}{cc}Savings&Frequency\\\$0-\$199&339\\\$200-\$399&86\\\$400-\$599&55\\\$600-\$799&18\\\$800-\$999&11\\\$1000-\$1199&8\\\$1200-\$1399&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7DSavings%26Frequency%5C%5C%5C%240-%5C%24199%26339%5C%5C%5C%24200-%5C%24399%2686%5C%5C%5C%24400-%5C%24599%2655%5C%5C%5C%24600-%5C%24799%2618%5C%5C%5C%24800-%5C%24999%2611%5C%5C%5C%241000-%5C%241199%268%5C%5C%5C%241200-%5C%241399%263%5Cend%7Barray%7D%5Cright%5D)
This is an example of grouped data, where a range of values is given rather than a single data point. First, find the total frequency.
n = 339 + 86 + 55 + 18 + 11 + 8 + 3
n = 520
The mean is the expected value using the midpoints of each range.
μ = (339×100 + 86×300 + 55×500 + 18×700 + 11×900 + 8×1100 + 3×1300) / 520
μ = 122400 / 520
μ = 235.38
The variance is:
σ² = [(339×100² + 86×300² + 55×500² + 18×700² + 11×900² + 8×1100² + 3×1300²) − (520×235.38²)] / (520 − 1)
σ² = 55009.7
The standard deviation is:
σ = 234.54
Substitute for x.
g(20)= 2(20-4)
g(20)=32.
x=32.
~god bless you!
Step-by-step explanation:
y = 3 + 8x^(³/₂), 0 ≤ x ≤ 1
dy/dx = 12√x
Arc length is:
s = ∫ ds
s = ∫₀¹ √(1 + (dy/dx)²) dx
s = ∫₀¹ √(1 + (12√x)²) dx
s = ∫₀¹ √(1 + 144x) dx
If u = 1 + 144x, then du = 144 dx.
s = 1/144 ∫ √u du
s = 1/144 (⅔ u^(³/₂))
s = 1/216 u^(³/₂)
Substitute back:
s = 1/216 (1 + 144x)^(³/₂)
Evaluate between x=0 and x=1.
s = [1/216 (1 + 144)^(³/₂)] − [1/216 (1 + 0)^(³/₂)]
s = 1/216 (145)^(³/₂) − 1/216
s = (145√145 − 1) / 216