The answer to the question
m x H = ![\left[\begin{array}{ccc}-25&37.5&-12.5\\\9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-25%2637.5%26-12.5%5C%5C%5C9%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Step 1; Multiply 5 with this matrix
and we get a matrix ![\left[\begin{array}{ccc}-5&10\\20&40\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%2610%5C%5C20%2640%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Multiply the fraction
with the matrix
and we get ![\left[\begin{array}{ccc}-\frac{2m}{5} &\frac{4m}{5} \\\frac{8m}{5} &\frac{16m}{5} \\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Cfrac%7B2m%7D%7B5%7D%20%26%5Cfrac%7B4m%7D%7B5%7D%20%5C%5C%5Cfrac%7B8m%7D%7B5%7D%20%26%5Cfrac%7B16m%7D%7B5%7D%20%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step2; Now equate corresponding values of the matrices with each other.
-5 =
and so on. By equating we get the value of m as 
Step 3; Add the matrices to get the value of matrix m.
Adding the three matrices on the RHS we get
.
Step 4; Adding the matrices on the LHS we get the resulting matrix as H +
. Equating the matrices from step 3 and 4 we get the value of H as ![\left[\begin{array}{ccc}-2&3&-1\\\9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%26-1%5C%5C%5C9%5Cend%7Barray%7D%5Cright%5D)
Step 5; Now to find the value of m x H we need to multiply the value of
with the matrix
Step 6; Multiplying we get the matrix m x H = [ -25
]
(y2-y1)/(x2-x1)=
slope: 21/26
Answer:
w=3/5 or w=-5
Step-by-step explanation:
5w^2+22w=15
5w^2+22w-15=0 (quadratic equation)
a=5, b=22, c=-15
w1,2 =(-b+-sqrt(b^2-4ac))/2a
w1,2 =(-22+-sqrt(22^2-4*5*(-15))/2*5
w1,2 =(-22+-sqrt(484+300))/10
w1,2=(-22+-sqrt(784))/10
w1,2=(-22+-28)/10
w1=(-22+28)/10, w2=(-22-28)/10
w1=6/10, w2=-50/10
w1=3/5, w2=-5
Answer:
Each cookie will have to be sold for at least $0.90 if the profit is to be made is more than $25.
Step-by-step explanation:
The amount spent on supplies is $20.
The number of cookies baked is = 50.
If the profit to be made is more than $25.00 .
Then we can safely say that all the cookies have to be sold for
= $20.00 + $25.00
= $45.00
Therefor the required inequality can be written as
50 x ≥ $45.00 ⇒ x ≥
⇒ x ≥ $0.90.
Therefore we can say that each cookie will have to be sold for at least $0.90 if the profit is to be made is more than $25.