Answer:
1/3 = x
Step-by-step explanation:
9514 1404 393
Answer:
Step-by-step explanation:
Let x and y represent the weights of the large and small boxes, respectively. The problem statement gives rise to the system of equations ...
x + y = 85 . . . . . combined weight of a large and small box
70x +50y = 5350 . . . . combined weight of 70 large and 50 small boxes
We can subtract 50 times the first equation from the second to find the weight of a large box.
(70x +50y) -50(x +y) = (5350) -50(85)
20x = 1100 . . . . simplify
x = 55 . . . . . . . divide by 20
Using this in the first equation, we can find the weight of a small box.
55 +y = 85
y = 30 . . . . . . . subtract 55
A large box weighs 55 pounds; a small box weighs 30 pounds.
The equation 9cos(sin¯¹(x)) = √(81 – 81x²) is true since L.H.S = R.H.S
To answer the question, we need to know what an equation is
<h3>What is an equation?</h3>
An equation is a mathematical expression that show the relationship between two variables.
Given 9cos(sin¯¹(x)) = √(81 – 81x²), we need to show L.H.S = R.H.S
So, L.H.S = 9cos(sin¯¹(x))
= 9[√{1 - sin²(sin¯¹(x)}] (Since sin²y + cos²y = 1 ⇒ cosy = √[1 - sin²y])
9[√{1 - sin²(sin¯¹(x)}] = √9² × √{1 - sin²(sin¯¹(x)}]
= √[9² × {1 - sin²(sin¯¹(x)}]
= √[81 × {1 - sin²(sin¯¹(x)}]
= √[81 × {1 - x²}] (since sin²(sin¯¹(x) = [sin(sin¯¹(x)]² = x²)
= √(81 – 81x²)
= R.H.S
So, the equation 9cos(sin¯¹(x)) = √(81 – 81x²) is true since L.H.S = R.H.S
Learn more about equations here:
brainly.com/question/2888445
#SPJ1
A= 99 because 11x10=100-10 will equal 97
Answer:
x=8
Step-by-step explanation:
x= -5/2=-2 1/2= -2.5. If you add all of those up you will get x=8
<h2><em>
Hope this helps and have a great day :)</em></h2>