1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ra1l [238]
3 years ago
6

Question 1 . What division problem does this area model represent?

Mathematics
1 answer:
Law Incorporation [45]3 years ago
6 0

Answer:

0

Step-by-step explanation:

You might be interested in
How do you get the answer and sketch it to this graft
Katyanochek1 [597]
F(x) = -4(x - 2)² + 2
f(x) = -4((x - 2)(x - 2)) + 2
f(x) = -4(x² - 2x - 2x + 4) + 2
f(x) = -4(x² - 4x + 4) + 2
f(x) = -4(x²) + 4(4x) - 4(4) + 2
f(x) = -4x² + 16x - 16 + 2
f(x) = -4x² + 16x - 14
-4x² + 16x - 14 = 0
x = <u>-16 +/- √(16² - 4(-4)(-14))</u>
                       2(-4)
x = <u>-16 +/- √(256 - 224)</u>
                     -8
x = <u>-16 +/- √(32)
</u>               -8<u>
</u>x = <u>-16 +/- 5.66
</u>              -8<u>
</u>x = <u>-16 + 5.66</u>      x = <u>-16 - 5.66
</u>             -8                         -8<u>
</u>x = <u>-10.34</u>            x = <u>-21.66</u>      
          -8                         -8
x = 1.2925           x = 2.7075
f(x) = -4x² + 16x - 14
f(1.2925) = -4(1.2925)² + 16(1.2925) - 14
f(1,2925) = -4(1.67055625) + 20.68 - 14
f(1.2925) = -6.682225 + 20.68 - 14
f(1.2925) = 13.997775 - 14
f(1.2925) = -0.002225
(x, f(x)) = (1.2925, -0.002225)
or
f(x) = -4x² + 16x - 14
f(2.7075) = -4(2.7075)² + 16(2.7075) - 14
f(2.7075) = -4(7.33055625) + 43.32 - 14
f(2.7075) = -29.322225 + 43.32 - 14
f(2.7075) = 13.997775 - 14
f(2.7075) = -0.002225
(x, f(x)) = (2.7075, -0.002225)
--------------------------------------------------------------------------------------------
f(x) = 2(x - 2)² + 1
f(x) = 2((x - 2)(x - 2)) + 1
f(x) = 2(x² - 2x - 2x + 4) + 1
f(x) = 2(x² - 4x + 4) + 1
f(x) = 2(x²) - 2(4x) + 2(4) + 1
f(x) = 2x² - 8x + 8 + 1
f(x) = 2x² - 8x + 9
2x² - 8x + 9 = 0
x = <u>-(-8) +/- √((-8)² - 4(2)(9))
</u>                      <u />2(2)
x = <u>8 +/- √(64 - 72)</u>
                 4
x = <u>8 +/- √(-8)</u>
             4
x = <u>8 +/- √(8 × (-1))</u>
                 4
x =<u> 8 +/- √(8)√(-1)</u>
                 4
x = <u>8 +/- 2.83i</u>
              4
x = 2 +/- 1.415i
x = 2 + 1.415i      x = 2 - 1.415i
f(x) = 2x² - 8x + 9
f(2 + 1.415i) = 2(2 + 1.415i)² - 8(2 + 1.415i) + 9
f(2 + 1.415i) = 2((2 + 1.415i)(2 + 1.415i)) - 16 - 11.32i + 9
f(2 + 1.415i) = 2(4 + 2.83i + 2.83i + 2.00225i²) - 16 - 11.32i + 9
f(2 + 1.415i) = 2(4 + 5.66i + 2.00225) - 16 - 11.32i + 9
f(2 + 1.415i) = 8 + 11.32i + 4.0045 - 16 - 11.32i + 9
f(2 + 1.415i) = 8 + 4.0045 - 16 + 9 + 11.32i - 11.32i
f(2 + 1.415i) = 12.0045 - 16 + 9
f(2 + 1.415i) = -3.9955 + 9
f(2 + 1.415i) = 5.0045
(x, f(x)) = (2 + 1.415i, 5.0045)
or
f(x) = 2x² - 8x + 9
f(2 - 1.415i) = 2(2 - 1.415i)² - 8(2 - 1.415i) + 9
f(2 - 1.415i) = 2((2 - 1.415i)(2 - 1.415i)) - 16 + 11.32i + 9
f(2 - 1.415i) = 2(4 - 2.83i - 2.83i + 2.00225i²) - 16 + 11.32i + 9
f(2 - 1.415i) = 2(4 - 5.66i + 2.00225) - 16 + 11.32i + 9
f(2 - 1.415i) = 8 - 11.32i + 4.0045 - 16 + 11.32i + 9
f(2 - 1.415i) = 8 + 4.0045 - 16 + 9 - 11.32i + 11.32i
f(2 - 1.415i) = 12.0045 - 16 + 9
f(2 - 1.145i) = -3.9955 + 9
f(2 - 1.415i) = 5.0045
(x, f(x)) = (2 - 1.415i, 5.0045)
--------------------------------------------------------------------------------------------
f(x) = -2(x - 4)² + 8
f(x) = -2((x - 4)(x - 4)) + 8
f(x) = -2(x² - 4x - 4x + 16) + 8
f(x) = -2(x² - 8x + 16) + 8
f(x) = -2(x²) + 2(8x) - 2(16) + 8
f(x) = -2x² + 16x - 32 + 8
f(x) = -2x² + 16x - 24
-2x² + 16x - 24 = 0
x = <u>-16 +/- √(16² - 4(-2)(-24))</u>
                      2(-2)
x = <u>-16 +/- √(256 - 192)</u>
                   -4
x = <u>-16 +/- √(64)</u>
               -4
x = <u>-16 +/- 8</u>
            -4
x = <u>-16 + 8</u>      x = <u>-16 - 8</u>
           -4                   -4
x = <u>-8</u>              x = <u>-24</u>
      -4                     -4
x = 2                x = 6
f(x) = -2x² + 16x - 24
f(2) = -2(2)² + 16(2) - 24
f(2) = -2(4) + 32 - 24
f(2) = -8 + 32 - 24
f(2) = 24 - 24
f(2) = 0
(x,f(x)) = (2, 0)
or
f(x) = -2x² + 16x - 24
f(6) = -2(6)² + 16(6) - 24
f(6) = -2(36) + 96 - 24
f(6) = -72 + 96 - 24
f(6) = 24 - 24
f(6) = 0
(x, f(x)) = (6, 0)
<u />
5 0
3 years ago
What is the converse of the following conditional statement? If x = –10, then x2 = 100
tangare [24]
The converse would be If x² = 100 then x = -10

So essentially if the conditional statement is p → q then the converse is q → p (In essence, the converse of a conditional statement  is formed by interchanging the hypothesis and the conclusion.)


8 0
3 years ago
Triangle ABC is circumscribed about Circle O. Use the diagram below to describe Point O.
Gwar [14]
Since this is an obtuse triangle, Point O is not equidistant from A, B, and C. Point O is not on the perpendicular bisectors, so the third statement is true. Point O is equidistant from AB, BC, and CA because these lines are pressed against the circpe in a mannered way.
7 0
3 years ago
Read 2 more answers
Which of the following is true about the expression5*1/4
xxMikexx [17]

Answer:

C. It represents the product of two rational numbers and its equivalent to a rational number.

Step-by-step explanation:

5 is a natural number, a real number and a rational number.

\frac{1}{4} is a real number and a rational number.

The product of 5 × \frac{1}{4} = 1.25 which is also a rational number in addition to being a real number.

8 0
3 years ago
Read 2 more answers
(1/1+sintheta)=sec^2theta-secthetatantheta pls help me verify this
Xelga [282]

Answer:

See Below.

Step-by-step explanation:

We want to verify the equation:

\displaystyle \frac{1}{1+\sin\theta} = \sec^2\theta - \sec\theta \tan\theta

To start, we can multiply the fraction by (1 - sin(θ)). This yields:

\displaystyle \frac{1}{1+\sin\theta}\left(\frac{1-\sin\theta}{1-\sin\theta}\right) = \sec^2\theta - \sec\theta \tan\theta

Simplify. The denominator uses the difference of two squares pattern:

\displaystyle \frac{1-\sin\theta}{\underbrace{1-\sin^2\theta}_{(a+b)(a-b)=a^2-b^2}} = \sec^2\theta - \sec\theta \tan\theta

Recall that sin²(θ) + cos²(θ) = 1. Hence, cos²(θ) = 1 - sin²(θ). Substitute:

\displaystyle \displaystyle \frac{1-\sin\theta}{\cos^2\theta} = \sec^2\theta - \sec\theta \tan\theta

Split into two separate fractions:

\displaystyle \frac{1}{\cos^2\theta} -\frac{\sin\theta}{\cos^2\theta} = \sec^2\theta - \sec\theta\tan\theta

Rewrite the two fractions:

\displaystyle \left(\frac{1}{\cos\theta}\right)^2-\frac{\sin\theta}{\cos\theta}\cdot \frac{1}{\cos\theta}=\sec^2\theta - \sec\theta \tan\theta

By definition, 1 / cos(θ) = sec(θ) and sin(θ)/cos(θ) = tan(θ). Hence:

\displaystyle \sec^2\theta - \sec\theta\tan\theta \stackrel{\checkmark}{=}  \sec^2\theta - \sec\theta\tan\theta

Hence verified.

8 0
3 years ago
Other questions:
  • 48 divided by four fifths
    14·1 answer
  • Jason's age is 1/2 of his brother's age. His brother's age can be represented by the expression 12a - 9. Write an expression tha
    7·1 answer
  • AYUDAAAAAAA<br><br>es un examen que era para dos dias atraaas<br>SOLO LA 4 la 5 y la 6 porfaa
    14·1 answer
  • How can you quickly determine the number of roots a polynomial will have by looking at the equation?
    8·2 answers
  • Part A
    13·2 answers
  • Bradley is returning home from a place that is 2 kilometers away. The function y = 2,000 − 90x represents Bradley's distance fro
    14·1 answer
  • A mother gives her son 2 drops of medicine for every 10kg of body weight how much drops does he need if he weighs 22.8kg
    15·1 answer
  • Select all explanation that prove triangle ABC is congruent to triangle A'B'C
    13·1 answer
  • 2. Which other expressionhas the same value as (-14)-(-8)? Explain your reasoning.
    11·1 answer
  • 352, 345, 338, ...<br> Find the 43rd term.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!