1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Galina-37 [17]
3 years ago
7

What is the value of x? a.60 B.100 c.120 D.180 Please help me today thank you

Mathematics
1 answer:
Alik [6]3 years ago
4 0

Answer: 100

Step-by-step explanation: x is close to a 90 degree angle so it would be 100

You might be interested in
Calculus, question 5 to 5a​
Llana [10]

5. Let x = \sin(\theta). Note that we want this variable change to be reversible, so we tacitly assume 0 ≤ θ ≤ π/2. Then

\cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - x^2}

and dx = \cos(\theta) \, d\theta. So the integral transforms to

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = \int \frac{\sin^3(\theta)}{\cos(\theta)} \cos(\theta) \, d\theta = \int \sin^3(\theta) \, d\theta

Reduce the power by writing

\sin^3(\theta) = \sin(\theta) \sin^2(\theta) = \sin(\theta) (1 - \cos^2(\theta))

Now let y = \cos(\theta), so that dy = -\sin(\theta) \, d\theta. Then

\displaystyle \int \sin(\theta) (1-\cos^2(\theta)) \, d\theta = - \int (1-y^2) \, dy = -y + \frac13 y^3 + C

Replace the variable to get the antiderivative back in terms of x and we have

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = -\cos(\theta) + \frac13 \cos^3(\theta) + C

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = -\sqrt{1-x^2} + \frac13 \left(\sqrt{1-x^2}\right)^3 + C

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = -\frac13 \sqrt{1-x^2} \left(3 - \left(\sqrt{1-x^2}\right)^2\right) + C

\displaystyle \int \frac{x^3}{\sqrt{1-x^2}} \, dx = \boxed{-\frac13 \sqrt{1-x^2} (2+x^2) + C}

6. Let x = 3\tan(\theta) and dx=3\sec^2(\theta)\,d\theta. It follows that

\cos(\theta) = \dfrac1{\sec(\theta)} = \dfrac1{\sqrt{1+\tan^2(\theta)}} = \dfrac3{\sqrt{9+x^2}}

since, like in the previous integral, under this reversible variable change we assume -π/2 < θ < π/2. Over this interval, sec(θ) is positive.

Now,

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = \int \frac{27\tan^3(\theta)}{\sqrt{9+9\tan^2(\theta)}} 3\sec^2(\theta) \, d\theta = 27 \int \frac{\tan^3(\theta) \sec^2(\theta)}{\sqrt{1+\tan^2(\theta)}} \, d\theta

The denominator reduces to

\sqrt{1+\tan^2(\theta)} = \sqrt{\sec^2(\theta)} = |\sec(\theta)| = \sec(\theta)

and so

\displaystyle 27 \int \tan^3(\theta) \sec(\theta) \, d\theta = 27 \int \frac{\sin^3(\theta)}{\cos^4(\theta)} \, d\theta

Rewrite sin³(θ) just like before,

\displaystyle 27 \int \frac{\sin(\theta) (1-\cos^2(\theta))}{\cos^4(\theta)} \, d\theta

and substitute y=\cos(\theta) again to get

\displaystyle -27 \int \frac{1-y^2}{y^4} \, dy = 27 \int \left(\frac1{y^2} - \frac1{y^4}\right) \, dy = 27 \left(\frac1{3y^3} - \frac1y\right) + C

Put everything back in terms of x :

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = 9 \left(\frac1{\cos^3(\theta)} - \frac3{\cos(\theta)}\right) + C

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = 9 \left(\frac{\left(\sqrt{9+x^2}\right)^3}{27} - \sqrt{9+x^2}\right) + C

\displaystyle \int \frac{x^3}{\sqrt{9+x^2}} \, dx = \boxed{\frac13 \sqrt{9+x^2} (x^2 - 18) + C}

2(b). For some constants a, b, c, and d, we have

\dfrac1{x^2+x^4} = \dfrac1{x^2(1+x^2)} = \boxed{\dfrac ax + \dfrac b{x^2} + \dfrac{cx+d}{x^2+1}}

3(a). For some constants a, b, and c,

\dfrac{x^2+4}{x^3-3x^2+2x} = \dfrac{x^2+4}{x(x-1)(x-2)} = \boxed{\dfrac ax + \dfrac b{x-1} + \dfrac c{x-2}}

5(a). For some constants a-f,

\dfrac{x^5+1}{(x^2-x)(x^4+2x^2+1)} = \dfrac{x^5+1}{x(x-1)(x+1)(x^2+1)^2} \\\\ = \dfrac{x^4 - x^3 + x^2 - x + 1}{x(x-1)(x^2+1)^2} = \boxed{\dfrac ax + \dfrac b{x-1} + \dfrac{cx+d}{x^2+1} + \dfrac{ex+f}{(x^2+1)^2}}

where we use the sum-of-5th-powers identity,

a^5 + b^5 = (a+b) (a^4-a^3b+a^2b^2-ab^3+b^4)

4 0
3 years ago
NOT ARITHMETIC SEQUENCE
makvit [3.9K]

Answer:

its ok

Step-by-step explanation:

5 0
3 years ago
Considere a função de oferta como sendo y= 5x - 1/2 e a função de demanda como sendo y= -7x + 47/2 , onde x é a quantidade e y é
swat32

A) Temos que igualar isso a 2,50, que é o valor de y, ou seja, o valor do preço. Façamos isso, então, na função de demanda.

y = -7x + \frac{47}{2}

Substituir.

2,50 = - 7x + \frac{47}{2}

Passar o que é x de um lado e o que é número do outro lado.

-7x  = - \frac{47}{2} + 2,50

A fração 47/2 corresponde a 23,5. É mais interessante para nós, nesse caso, utilizar o valor decimal.

-7x  = - 23,5 + 2,50

Somar logo.

-7x = -21

Podemos multiplicar por -1 para tirar os sinais negativos.

7x = 21

Passar o x dividindo

x = \frac{21}{7}

Dividir

\boxed{x = 3}

Para um preço de R$ 2,50, a quantidade demandada é de 3 unidades.



B) Basta igualar as duas formulinhas.

5x - \frac{1}{2} = -7x + \frac{47}{2}

Passar o que é x de um lado e o que é número do outro lado.

5x + 7x = \frac{47}{2} + \frac{1}{2}

Somar tudo. Como as frações têm o mesmo denominador, <u>nada de </u><u>mmc</u>! Basta somar os numeradores.

12x = \frac{48}{2}

Podemos dividir lá, olha:

12x = 24

Passar o x dividindo

x = \frac{24}{12}

Dividir

\boxed{x = 2}

O ponto de equilíbrio é o valor 2.



C) Basta, então, igualar as fórmulas da oferta e da demanda a 10.

Fórmula da oferta

10 = 5x - \frac{1}{2}

Passar o que é x de um lado e o que é número do outro lado.

5x = 10 - \frac{1}{2}

Se 1/2 = 0,5, dá pra resolver sem fazer mmc:

5x = 10 - 0,5

Subtrair

5x = 9,5

Passar dividindo

x = \frac{9,5}{5}

Dividir.

\boxed{x = 1,9}

Fórmula da demanda

10 = -7x + \frac{47}{2}

Passar o que é x de um lado e o que é número do outro lado.

-7x = \frac{47}{2} - 10

Divide 47/2, vai.

-7x = 23,5 - 10

Subtrair.

-7x = 13,5

Passar o 7 dividindo.

x = - \frac{13,5}{7}

Vamos dividir e transformar em decimal.

\boxed{x = -1,9285714285714285714285714285714}


Subtrair a oferta pela demanda.

x = 1,9 - (-1,9285714285714285714285714285714)

Subtrair.

\boxed{x = 3,8285714285714285714285714285714}

Arredondando, o preço será de R$ 3,83.

8 0
3 years ago
Ella and Jake love to skateboard. They created a frame for the ramp and then covered it with wood.
Orlov [11]

Answer:

Step-by-step explanation:

  • Two triangular ends
  • Area of one = 1/2 b * h
  • b =1.2
  • h =0.9
  • Area = 1/2 * 1.2 * 0.9 =   0.54 sq meters
  • Area of 2  = 2 * 0.54                                      1.08

Area bottom

  • L = 3.5 m
  • w = 1.2
  • Area = L * W
  • Area = 3.5 * 1.2
  • Area =                                                              4.2

Area Back

  • L = 3.5
  • W = 0.9
  • Area = 3.5 * 0.9
  • Area =                                                                     3.15

Area Slanted piece

  • L = 3.5
  • w = 1.5
  • Area = L * W
  • Area = 3.5 * 1.5 =                          <u>                         5.25</u>

Total  = 5.25 + 3.15 + 4.2 + 1.08 =                               13.68                  

6 0
3 years ago
Read 2 more answers
How many solutions does the following have. Y=3x-2 and 2x+5y=7
bezimeni [28]
One, the intersection point is (1,1)
3 0
3 years ago
Other questions:
  • How do you do this problem???????????????/
    10·1 answer
  • Find the slope of the line that goes through (-1,2) and (-1,9)
    6·1 answer
  • How do you express 14,100,000 in scientific notation?
    5·1 answer
  • If the Leaning Tower of Pisa has a height of 55 meters, radius of 8 meters, what is the volume?
    11·2 answers
  • Help asap this is due tonight
    8·1 answer
  • 5 pi over 12 in degrees
    13·2 answers
  • how much money would you have if you deposited $100.00 in an account that earned 8% interest after 40 years?
    15·2 answers
  • A partir dos valores a seguir, determine a lei da função.
    15·1 answer
  • Please Help, what is the answer
    10·1 answer
  • How do u find the pints of best fit ?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!