Answer:
y = 5/2x - 5
Step-by-step explanation:
You have to rearrange the equation so that it is equal to y.
5x - 2y = 10
(5x - 2y) - 5x = -5x + 10
-2y = -5x + 10
(-2y)/-2 = (-5x)/-2 + (10)/-2
y = 5/2x - 5
Answer:
see below
Step-by-step explanation:
The angle where chords cross is the average of the intercepted arcs. Here, that is ...
(37° +46°)/2 = (83°)/2 = 41.5°
Angle SUT is 41.5°.
_____
<em>Comment on the error</em>
The measure of an arc cannot be arbitrarily said to be the same as the angle where the chords cross. It will be the same if (a) the chords cross at the circle center, or (b) the opposite intercepted arc has the same measure. Neither of these conditions hold here.
The gift wrap needed by Damarcus = total surface area of a rectangular box = 1,048 in.².
<h3>What is the Total Surface Area of a Rectangular Box?</h3>
Total surface area (TSA) = 2(wl+hl+hw), where:
- l = length
- w = width
- h = height of the box.
The amount of gift wrap needed to cover the whole box = total surface area of the rectangular box
l = 20 in.
w = 8 in.
h = 13 in.
Plug in the values into the formula for total surface area of a rectangular box:
TSA = 2(8×20 + 13×20 + 13×8)
TSA = 1,048 in.²
Therefore, the gift wrap needed by Damarcus = total surface area of a rectangular box = 1,048 in.².
Learn more about rectangular box on:
brainly.com/question/13103197
Answer:
your cute and hot
Step-by-step explanation:
keep on doing what you are doing
Answer:
A) 154x89 _s2
s
Step-by-step explanation:
A) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
sA) 154x89 _s2
s