Answer: 50a+2
Step-by-step explanation:
1. Simplify 5a5a\5a5a to 1.
1+5×10a+10
2.Simplify 5×10a to 50a.
1+50a+10
3.Cancel 10.
1+50a+1
4. Collect like terms.
50a+(1+1)
5. Simplify.
50a+2
In the question you have 5 minutes and 5 widget and 5 machines so you it would take 300 minutes to make 300 widget with 300 Machi es
Simply change 1/4 to a decimal
1/4 = 0.25
now we can multiply 0.25 and 32
lets do the math:)
0.25 x 32 = 8
your answer = 8
When in doubt, eat a pineapple :)
<h3>Given</h3>
- a cone of height 0.4 m and diameter 0.3 m
- filling at the rate 0.004 m³/s
- fill height of 0.2 m at the time of interest
<h3>Find</h3>
- the rate of change of fill height at the time of interest
<h3>Solution</h3>
The cone is filled to half its depth at the time of interest, so the surface area of the filled portion will be (1/2)² times the surface area of the top of the cone. The filled portion has an area of
... A = (1/4)(π/4)d² = (π/16)(0.3 m)² = 0.09π/16 m²
This area multiplied by the rate of change of fill height (dh/dt) will give the rate of change of volume.
... (0.09π/16 m²)×dh/dt = dV/dt = 0.004 m³/s
Dividing by the coefficient of dh/dt, we get
... dh/dt = 0.004·16/(0.09π) m/s
... dh/dt = 32/(45π) m/s ≈ 0.22635 m/s
_____
You can also write an equation for the filled volume in terms of the filled height, then differentiate and solve for dh/dt. When you do, you find the relation between rates of change of height and area are as described above. We have taken a "shortcut" based on the knowledge gained from solving it this way. (No arithmetic operations are saved. We only avoid the process of taking the derivative.)
Note that the cone dimensions mean the radius is 3/8 of the height.
V = (1/3)πr²h = (1/3)π(3/8·h)²·h = 3π/64·h³
dV/dt = 9π/64·h²·dh/dt
.004 = 9π/64·0.2²·dh/dt . . . substitute the given values
dh/dt = .004·64/(.04·9·π) = 32/(45π)