Answer:
(
, 8 )
Step-by-step explanation:
the equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = 10x - 2 ← is in slope- intercept form
with slope m = 10
Parallel lines have equal slopes
then the tangent to the parabola with a slope of 10 is required.
the slope of the tangent at any point on the parabola is 
differentiate each term using the power rule
(a
) = na
, then
= 6x + 2
equating this to 10 gives
6x + 2 = 10 ( subtract 2 from both sides )
6x = 8 ( divide both sides by 6 )
x =
= 
substitute this value into the equation of the parabola for corresponding y- coordinate.
y = 3(
)² + 2
= (3 ×
) + 2
=
+ 
= 
= 8
the point on the parabola with tangent parallel to y = 10x - 2 is (
, 8 )
Answer:
A system of the equation of a circle and a linear equation
A system of the equation of a parabola and a linear equation
Step-by-step explanation:
Let us verify our answer
A system of the equation of a circle and a linear equation
Let an equation of a circle as
..........(1)
Let a liner equation Y = x ............(2)
substitute (2) in (1)

so Y =
so the two solution are (
)
A system of the equation of a parabola and a linear equation
Let equation of Parabola be 
and linear equation y = x
substitute

Y = 0,1
so the two solutions will be (0,0) and (1,1)
Answer:
b > -6 or b < 6
Step-by-step explanation:
The absolute value operator always returns a positive number, with |b| = b if b > 0, and |b| = -b if b 0. With this in mind, consider the following inequality:
Because of the absolute value operator, this is valid for b values larger than 6 and less than -6. As a result, the compound inequality that this circumstance illustrates is: