Answer: The sphere is 0.002548 cm travel up the plane.
Step-by-step explanation:
Since we have given that
Inclination angle = 30°
Translational speed = 0.25 m/s
As we know that

and
Length of solid sphere is given by

So, it becomes,

And 
So, it becomes,

Hence, the sphere is 0.002548 cm travel up the plane.
100 because of the system
have a good day
Answer:
x= 7
Step-by-step explanation:
11x-2 = 75
11(7) - 2
77 - 2 = 75
x= 7
Answer:
The expected cost is 152
Step-by-step explanation:
Recall that since Y is uniformly distributed over the interval [1,5] we have the following probability density function for Y
if
and 0 othewise. (To check this is the pdf, check the definition of an uniform random variable)
Recall that, by definition

Also, we are given that
. Recall the following properties of the expected value. If X,Y are random variables, then

Then, using this property we have that
.
Thus, we must calculate E[Y] and E[Y^2].
Using the definition, we get that
![E[Y] = \int_{1}^{5}\frac{y}{4} dy =\frac{1}{4}\left\frac{y^2}{2}\right|_{1}^{5} = \frac{25}{8}-\frac{1}{8} = 3](https://tex.z-dn.net/?f=E%5BY%5D%20%3D%20%5Cint_%7B1%7D%5E%7B5%7D%5Cfrac%7By%7D%7B4%7D%20dy%20%3D%5Cfrac%7B1%7D%7B4%7D%5Cleft%5Cfrac%7By%5E2%7D%7B2%7D%5Cright%7C_%7B1%7D%5E%7B5%7D%20%3D%20%5Cfrac%7B25%7D%7B8%7D-%5Cfrac%7B1%7D%7B8%7D%20%3D%203)
![E[Y^2] = \int_{1}^{5}\frac{y^2}{4} dy =\frac{1}{4}\left\frac{y^3}{3}\right|_{1}^{5} = \frac{125}{12}-\frac{1}{12} = \frac{31}{3}](https://tex.z-dn.net/?f=E%5BY%5E2%5D%20%3D%20%5Cint_%7B1%7D%5E%7B5%7D%5Cfrac%7By%5E2%7D%7B4%7D%20dy%20%3D%5Cfrac%7B1%7D%7B4%7D%5Cleft%5Cfrac%7By%5E3%7D%7B3%7D%5Cright%7C_%7B1%7D%5E%7B5%7D%20%3D%20%5Cfrac%7B125%7D%7B12%7D-%5Cfrac%7B1%7D%7B12%7D%20%3D%20%5Cfrac%7B31%7D%7B3%7D)
Then
