Answer:
82°
Step-by-step explanation:
m÷ BAD + m÷ BCD = 180°
98° + m÷BCD = 180°
m÷BCD = 180° - 98°= <u> </u><u>8</u><u>2</u>°
Answer:
1. Function
2. Function
3. Function
4. Not a Function
5. Not a Function
Step-by-step explanation:
Hope it helps:)
Answer:
b = 55°
c = 35°
Step-by-step explanation:
b° = 180° - (85°+40°) = 180° - 125° = 55°
c° = 180° - (b°+90°) = 180° - (55°+90°) = 180° - 145° = 35°
See the attached figure to better understand the problem
let
L-----> length side of the cuboid
W----> width side of the cuboid
H----> height of the cuboid
we know that
One edge of the cuboid has length 2 cm-----> <span>I'll assume it's L
so
L=2 cm
[volume of a cuboid]=L*W*H-----> 2*W*H
40=2*W*H------> 20=W*H-------> H=20/W------> equation 1
[surface area of a cuboid]=2*[L*W+L*H+W*H]----->2*[2*W+2*H+W*H]
100=</span>2*[2*W+2*H+W*H]---> 50=2*W+2*H+W*H-----> equation 2
substitute 1 in 2
50=2*W+2*[20/W]+W*[20/W]----> 50=2w+(40/W)+20
multiply by W all expresion
50W=2W²+40+20W------> 2W²-30W+40=0
using a graph tool------> to resolve the second order equation
see the attached figure
the solutions are
13.52 cm x 1.48 cm
so the dimensions of the cuboid are
2 cm x 13.52 cm x 1.48 cm
or
2 cm x 1.48 cm x 13.52 cm
<span>Find the length of a diagonal of the cuboid
</span>diagonal=√[(W²+L²+H²)]------> √[(1.48²+2²+13.52²)]-----> 13.75 cm
the answer is the length of a diagonal of the cuboid is 13.75 cm
Weird. I think you just need to look if the point falls on the shaded area. But only (-5,5) does ...