1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
amid [387]
3 years ago
8

Simplify the expression. (x 3/2)6

Mathematics
1 answer:
Sliva [168]3 years ago
6 0

For this case we must simplify the following expression:

(x ^ {\frac {3} {2}}) ^ 6

We have that by definition of properties of powers that is fulfilled:

(a ^ n) ^ m = a ^ {n * m}

Then, rewriting the expression:

x ^ {\frac {3 * 6} {2}} =\\x ^ {\frac {18} {2}} =\\x ^ 9

Answer:

(x^{\frac{3}{2}})^6=x^9

You might be interested in
If someone can please help me with this question I’m stuck
Digiron [165]

Answer:

B 65 sq. units

Step-by-step explanation:

The area of a triangle is equal to base times height divided by 2

the base is 13 and the height 10

13 times 10 is 130. 130 divided by two is equal to 65

4 0
4 years ago
Read 2 more answers
Can anyone help me figure this out? It’s not 75 x 0.20.. thank you :) I’ll give Brainly!!
cluponka [151]

Answer:

60

Step-by-step explanation:

Dividends are paid quarterly and it wants the annual amount, so you have to mulitply what you originally got by 4

or

75*.2*4=60

8 0
3 years ago
Read 2 more answers
How to do the inverse of a 3x3 matrix gaussian elimination.
nata0808 [166]

As an example, let's invert the matrix

\begin{bmatrix}-3&2&1\\2&1&1\\1&1&1\end{bmatrix}

We construct the augmented matrix,

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right]

On this augmented matrix, we perform row operations in such a way as to transform the matrix on the left side into the identity matrix, and the matrix on the right will be the inverse that we want to find.

Now we can carry out Gaussian elimination.

• Eliminate the column 1 entry in row 2.

Combine 2 times row 1 with 3 times row 2 :

2 (-3, 2, 1, 1, 0, 0) + 3 (2, 1, 1, 0, 1, 0)

= (-6, 4, 2, 2, 0, 0) + (6, 3, 3, 0, 3, 0)

= (0, 7, 5, 2, 3, 0)

which changes the augmented matrix to

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right]

• Eliminate the column 1 entry in row 3.

Using the new aug. matrix, combine row 1 and 3 times row 3 :

(-3, 2, 1, 1, 0, 0) + 3 (1, 1, 1, 0, 0, 1)

= (-3, 2, 1, 1, 0, 0) + (3, 3, 3, 0, 0, 3)

= (0, 5, 4, 1, 0, 3)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 5 & 4 & 1 & 0 & 3 \end{array} \right]

• Eliminate the column 2 entry in row 3.

Combine -5 times row 2 and 7 times row 3 :

-5 (0, 7, 5, 2, 3, 0) + 7 (0, 5, 4, 1, 0, 3)

= (0, -35, -25, -10, -15, 0) + (0, 35, 28, 7, 0, 21)

= (0, 0, 3, -3, -15, 21)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 0 & 3 & -3 & -15 & 21 \end{array} \right]

• Multiply row 3 by 1/3 :

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Eliminate the column 3 entry in row 2.

Combine row 2 and -5 times row 3 :

(0, 7, 5, 2, 3, 0) - 5 (0, 0, 1, -1, -5, 7)

= (0, 7, 5, 2, 3, 0) + (0, 0, -5, 5, 25, -35)

= (0, 7, 0, 7, 28, -35)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 0 & 7 & 28 & -35 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Multiply row 2 by 1/7 :

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Eliminate the column 2 and 3 entries in row 1.

Combine row 1, -2 times row 2, and -1 times row 3 :

(-3, 2, 1, 1, 0, 0) - 2 (0, 1, 0, 1, 4, -5) - (0, 0, 1, -1, -5, 7)

= (-3, 2, 1, 1, 0, 0) + (0, -2, 0, -2, -8, 10) + (0, 0, -1, 1, 5, -7)

= (-3, 0, 0, 0, -3, 3)

\left[ \begin{array}{ccc|ccc} -3 & 0 & 0 & 0 & -3 & 3 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Multiply row 1 by -1/3 :

\left[ \begin{array}{ccc|ccc} 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

So, the inverse of our matrix is

\begin{bmatrix}-3&2&1\\2&1&1\\1&1&1\end{bmatrix}^{-1} = \begin{bmatrix}0&1&-1\\1&4&-5\\-1&-5&7\end{bmatrix}

6 0
3 years ago
Evaluate.<br> 13[42–(2+4)]
german

Answer:

468

Step-by-step explanation:

=13[42-6]

=13 (36)

=13×36

=468

6 0
3 years ago
Find the value of a in the parallelogram.
S_A_V [24]
6a-4 = 3a+54
3a = 58
a = 58/3
a= 19.333
3 0
3 years ago
Other questions:
  • Let h(t)= -16t^2+64t+80 represent the height of an object above the ground after t seconds. Determine the number of seconds it t
    15·1 answer
  • A model scale is 1 in. = 1.5 ft.
    14·2 answers
  • 3(x + 5) = 7x - 13
    15·1 answer
  • How to work out 189,232÷8
    8·1 answer
  • What is the probability of these events when we randomly select a permutation of {1,2, ..., n} where n≥4? a) 1 precedes 2 c) 1 i
    12·1 answer
  • If m&lt;1=70 degrees and &lt;1 and &lt;2 are supplementary angles . Find m&lt;2
    8·1 answer
  • A plumber charges a service fee of $40 plus $25 per hour for labor. Write a function rule for the total cost of hiring the plumb
    6·1 answer
  • What is the slope-intercept of 5x-y=-36
    15·1 answer
  • How many kilograms equal 94 tons
    11·2 answers
  • Point t is on line segment su. Given st=6 and tu=5 determine the length of su
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!