1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mariulka [41]
4 years ago
11

Solve sin(x)(sinx +1) = 0

Mathematics
1 answer:
77julia77 [94]4 years ago
4 0

Answer:

x=\p \pi n ,x=\frac{3\pi}{2} \pm 2\pi n

Step-by-step explanation:

We want to solve the equation,

sinx(sin x+1)=0

By the zero product property of multiplication,

sinx=0\:or\:(sin x+1)=0

\Rightarrow sinx=0\:or\:sin x=-1

If sinx=0, then, x=\pi

The general solution is

x=\pm \pi n

For sinx=-1, it means x is either in the third quadrant or fourth quadrant.

So we first solve for,

sinx=1

This implies that,

x=\frac{\pi}{2}

In the third quadrant,

x=\pi +\frac{\pi}{2}

x=\frac{3\pi}{2}

In the fourth quadrant,

x=2\pi -\frac{\pi}{2}

x=\frac{3\pi}{2}

This is a repeated solution.

So the general solution is

If sin x=-1, then x=\frac{3\pi}{2}\pm 2\pi n

Putting the two solutions together gives

x=\pm \pi n ,x=\frac{3\pi}{2} \pm 2\pi n, where n is an integer

The correct answer is C.

You might be interested in
50 POINTS
nlexa [21]

What is the slope-intercept form of the linear equation 2x + 3y = 6? Drag and drop the appropriate number, symbol, or variable to each box.

4 0
3 years ago
Read 2 more answers
To verify the identity tan (x1+x2+x3) = tan x1 + tan x2 + tan x3 - tan x1 tan x2 tan x3 / 1 - tan x1 tan x2 - tan x2 tan x3
andrezito [222]

Answer:

The answer is the last one

tan(x_{1}+x_{2}+x_{3})=\frac{tanx_{1}+tan(x_{2}+x_{3})}{1-tanx_{1}tan(x_{2}+x_{3})}

Step-by-step explanation:

∵ tan(x_{1}+x_{2}+x_{3}=\frac{tanx_{1}+tan(x_{2}+x_{3})}{1-tanx_{1}tan(x_{2}+x_{3})}

=\frac{tanx_{1}+\frac{tanx_{2}+tanx_{3}}{1-tanx_{2}tanx_{3}}  }{1-tanx_{1}(\frac{tanx_{2}+tanx_{3}}{1-tanx_{2}tanx_{3}})}

Multiply up and down by 1-tanx_{2}tanx_{3}

\frac{tanx_{1}(1-tanx_{2}tanx_{3})+tanx_{2}+tanx_{3}}{1-tanx_{2}tanx_{3}-tanx_{1}tanx_{2}-tanx_{1}tanx_{3}}

=\frac{tanx_{1}+tanx_{2}+tanx_{3}-tanx_{1}tanx_{2}tanx_{3}}{1-tanx_{1}tanx_{2}-tanx_{2}tanx_{3}-tanx_{1}tanx_{3}}

7 0
3 years ago
Read 2 more answers
Use the method of "undetermined coefficients" to find a particular solution of the differential equation. (The solution found ma
Naddika [18.5K]

Answer:

The particular solution of the differential equation

= \frac{-1,36,656cos5x+1,89,800 sin5x}{-1204}  +  \frac{1}{37}185e^{6x})

Step-by-step explanation:

Given differential equation y''(x) − 10y'(x) + 61y(x) = −3796 cos(5x) + 185e6x

The differential operator form (D^{2} -10D+61)y(x) = −3796 cos(5x) + 185e^{6x}

<u>Rules for finding particular integral in some special cases:-</u>

  • let f(D)y = e^{ax} then

      the particular integral \frac{1}{f(D)} (e^{ax} ) = \frac{1}{f(a)} (e^{ax} ) if f(a) ≠ 0

  • let f(D)y = cos (ax ) then

      the particular integral \frac{1}{f(D)} (cosax ) = \frac{1}{f(D^2)} (cosax ) =\frac{cosax}{f(-a^2)}  f(-a^2) ≠ 0

Given problem

(D^{2} -10D+61)y(x) = −3796 cos(5x) + 185e^{6x}

P<u>articular integral</u>:-

P.I = \frac{1}{f(D)}( −3796 cos(5x) + 185e^{6x})

P.I = \frac{1}{D^2-10D+61}( −3796 cos(5x) + 185e^{6x})

P.I = \frac{1}{D^2-10D+61}( −3796 cos(5x) +  \frac{1}{D^2-10D+61}185e^{6x})  

P.I   = I_{1} +I_{2}

we will apply above two conditions, we get

I_{1} =

\frac{1}{D^2-10D+61}( −3796 cos(5x) = \frac{1}{(-25)-10D+61}( −3796 cos(5x) ( since D^2 = - 5^2)                                        = \frac{1}{(36-10D}( −3796 cos(5x) \\=  \frac{1}{(36-10D}X\frac{36+10D}{36+10D} ( −3796 cos(5x)

 on simplification we get

= \frac{1}{(36^2-(10D)^2}36+10D( −3796 cos(5x)

= \frac{-1,36,656cos5x+1,89,800 sin5x}{1296-100(-25)}

= \frac{-1,36,656cos5x+1,89,800 sin5x}{-1204}

I_{2} =

\frac{1}{D^2-10D+61}185e^{6x}) = \frac{1}{6^2-10(6)+61}185e^{6x})

\frac{1}{37}185e^{6x})

 Now particular solution

P.I   = I_{1} +I_{2}

P.I  = \frac{-1,36,656cos5x+1,89,800 sin5x}{-1204}    +  \frac{1}{37}185e^{6x})

 

8 0
3 years ago
A hypothesis regarding the weight of newborn infants at a community hospital is that the mean is 6.6 pounds. A sample of seven i
shutvik [7]

Answer:

Degree of freedom is 6.

Step-by-step explanation:

A sample of seven infants is randomly selected and their weights at birth are recorded.

Given, Population mean = 6.6 pounds

Sample size = n = 7

Degree of freedom = n - 1

                                = 7 - 1

                                = 6

Degree of freedom is 6.

8 0
4 years ago
Bananas cost $1.10 per pound. How much will five pounds of bananas cost?
ASHA 777 [7]
Hello!
1.10*5=5.5
5 pounds of bananas will cost $5.50.
Hope this helps!
5 0
3 years ago
Read 2 more answers
Other questions:
  • What does the numerator of the fraction 1 /2 fraction mean?
    14·2 answers
  • Suppose a furniture manufacturer ships their products to distributors in pairs (so there are two items sent in each box). The we
    12·2 answers
  • North Country Rivers of York, Maine, offers one-day white-water rafting trips on the Kennebec River. The trip costs $69 per pers
    12·1 answer
  • Emily put toys into a square box that is 46 centimeters long. How many square centimeters is the bottom of the box?
    15·1 answer
  • Find the inverse of the function.
    6·1 answer
  • Someone help me with this please!!!!
    12·1 answer
  • Tommy travel 495 miles at 45 mi/hr. How long did the trip take ?
    8·2 answers
  • Need help asap <br> will give brainly
    12·2 answers
  • Please help asap!!!!!!
    5·2 answers
  • A die is tossed. Find the odds against rolling a number greater than 4.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!