Step-by-step explanation:
$800 × 5% = $40
for 1 year, I earn $40
100 ÷ 40 = 2 remainder 2
Therefore I would have to leave the money in for at least 3 years to earn $100
Answer:
plus the other number and the other one
Answer:
a) No.
b) Yes.
Step-by-step explanation:
a) It's not proportional. Although the graph represents a straight line, it does not pass through the origin (0,0).
b) It is proportional. It is a straight line that passes through the origin.
Exercise is important because of its positive on all the body systems in addition regular exercise reduces the risk factor of contracting many diseases various components of wellness often influence one another summarize how the components of health are related to wellness
Answer:
Given the mean = 205 cm and standard deviation as 7.8cm
a. To calculate the probability that an individual distance is greater than 218.4 cm, we subtract the probability of the distance given (i.e 218.4 cm) from the mean (i.e 205 cm) divided by the standard deviation (i.e 7.8cm) from 1. Therefore, we have 1- P(Z
). Using the Z distribution table we have 1-0.9573. Therefore P(X >218.4)= 0.0427.
b. To calculate the probability that mean of 15 (i.e n=15) randomly selected distances is greater than 202.8, we subtract the probability of the distance given (i.e 202.8cm) from the mean (i.e 205 cm) divided by the standard deviation (i.e 7.8cm) divided by the square root of mean (i.e n= 15) from 1. Therefore, we have 1- P(Z
). Using the Z distribution table we have 1-0.1378. Therefore P(X >202.8)= 0.8622.
c. This will also apply to a normally distributed data even if it is not up to the sample size of 30 since the sample distribution is not a skewed one.
Step-by-step explanation:
Given the mean = 205 cm and standard deviation as 7.8cm
a. To calculate the probability that an individual distance is greater than 218.4 cm, we subtract the probability of the distance given (i.e 218.4 cm) from the mean (i.e 205 cm) divided by the standard deviation (i.e 7.8cm) from 1. Therefore, we have 1- P(Z
). Using the Z distribution table we have 1-0.9573. Therefore P(X >218.4)= 0.0427.
b. To calculate the probability that mean of 15 (i.e n=15) randomly selected distances is greater than 202.8, we subtract the probability of the distance given (i.e 202.8cm) from the mean (i.e 205 cm) divided by the standard deviation (i.e 7.8cm) divided by the square root of mean (i.e n= 15) from 1. Therefore, we have 1- P(Z
). Using the Z distribution table we have 1-0.1378. Therefore P(X >202.8)= 0.8622.
c. This will also apply to a normally distributed data even if it is not up to the sample size of 30 since the sample distribution is not a skewed one.