1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
egoroff_w [7]
3 years ago
15

How.to find area of parallelogram with missing height?

Mathematics
2 answers:
nlexa [21]3 years ago
7 0

Answer:

You divide the area by the number you already have.

Step-by-step explanation:

Tatiana [17]3 years ago
4 0
Divide the area with the number you already have.
You might be interested in
5. Put the following numbers in order from least to greatest in the spaces provided.
zloy xaker [14]

Answer:

7,7.5,8,8.1

Step-by-step explanation:

count 1 to 10. See what comes first and that's how you determine what comes first.

5 0
3 years ago
Suppose that 10 people, including you and a friend, line up for a group picture. How many ways can the photographer rearrange th
slamgirl [31]

Answer:

483 840 ways

Step-by-step explanation:

Let you and your friend be A and B.

With three people always between you two,, we have

Case 1: AxxxBxxxxx

Case 2: xAxxxBxxxx

Case 3: xxAxxxBxxx

Case 4: xxxAxxxBxx

Case 5: xxxxAxxxBx

Case 6: xxxxxAxxxB

So there is 6 ways of arranging you two through the line and for each of the six cases,

If you two remained in your positions, the rest can be arranged in 8! ways

Also for each case, you two can interchange your positions in 2! ways

Therefore,

The photographer can rearranged the line keep three people between you an your friend in

8! * 2! * 6 = 483 840 ways

7 0
3 years ago
Rewrite the square-root expression as an imaginary number: sqrt of -64<br><br> is it 8i?
IceJOKER [234]
The answer is 8i.

i = √(-1)

√(-64) = √((-1) * 64)
           = √(-1) * √64
           = i * √8²
           = i * 8
           = 8i
6 0
3 years ago
Read 2 more answers
The sum of two integers is -13. Their difference is 7. What are the two integers?
Darya [45]
The two integers are -3 and -10
7 0
3 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
2 years ago
Other questions:
  • Choose the linear inequality that describes each graph.
    8·2 answers
  • Use the graph below to answer the question that follows:
    9·2 answers
  • What is 41=32– r is?
    7·2 answers
  • When he was measuring herbs on his scale,Neville place 1/2 gram weight,then 1/5 gram weight, and finally 1/8 gram before the sca
    14·1 answer
  • 1+4=5, 2+5=12, 3+6=21 , 8+11=? WHAT THE CORRECT ANSWER?/
    6·1 answer
  • a coffee shop sells a ceramic coffee mug for $8.95. each refill costs $1.50. last month rose spent $26.95. how many refills did
    14·2 answers
  • Colby wants to set square tiles on the top of the wooden box the top of the box is a rectangle 7 1/2 inches long and 5 1/2 inche
    6·1 answer
  • Check all of the correct solutions to this problem
    8·1 answer
  • Heidi solved the equation
    7·1 answer
  • On a coordinate plane, points are at (negative 5, 5), (0, 5), (0, negative 1), and (negative 5, negative 1).
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!