Answer: The vertex of the given function is (2, -3).
Step-by-step explanation: We are given to find the vertex of the following function :

We know that
the vertex form of a function with vertex at the point (h, k) is given by

From equation (i), we have

Comparing the above equation with the vertex form, we get that the vertex of the given function is (2, -3).
Thus, the vertex of the given function is (2, -3).