Answer:
B.
Explanation:
B. is the best choice here because it is the only characteristic listed that only describes a eukaryotic cell. Both prokaryotic and eukaryotic cells have cell membranes, cytoplasm, and cillia. However, only eukaryotic cells have a nucleus to store their DNA.
Answer:
Well I think your able to identify by looking at the Physical and Chemical Properties or by its Melting or boiling point.
Hopefully this is correct
Enzymes are (usually) specific to the substrates they bind to. Thus, each enzyme has one and only one substrate structure they can metabolize, so even substrates with similar structures cannot be broken down by an enzyme specific to one of them.
0.1 M solution of a disaccharide solution will contain 2000 monosaccharide molecules.
<h3>What are monosaccharides?</h3>
Monosaccharides, also known as simple sugars are the simplest monomers of carbohydrates which may either be 3 carbon, 4 carbon, 5 carbon, 6 carbon or 7 carbo compounds.
There are two types of monosaccharides;
- aldoses sugars, e.g. glucose, and
- ketose sugars e.g. fructose.
When two monosaccharides are linked together by glycosidic bonds to form a single compound, the compound formed is called a disaccharide.
Considering the give question:
Suppose a 0.1M solution of a monosaccharide contains 1000 monosaccharide molecules. How many monosaccharide molecules would be in a 0.1 M solution of a disaccharide.
The number of monosaccharides molecules present in the 0.1 M solution of a disaccharide is determined as follows:
1 disaccharide molecule contains 2 monosaccharide molecules
0.1M solution of a monosaccharide contains 1000 monosaccharide molecules.
0.1 M solution of a disaccharide will contain 2 * 1000 monosaccharide molecules
0.1 M solution of a disaccharide will contain = 2000 monosaccharide molecules.
Learn more about monosaccharides and disaccharides at: brainly.com/question/731310
#SPJ1