Answer:
A lack of genetic variation in offspring
Answer:Biological structures are able to adapt their growth to external mechanical stimuli and impacts. For example, when plants are under external loads, such as wind force and self-weight, the overloaded zones are reinforced by local growth acceleration and the unloaded zones stop growing or even shrink. Such phenomena are recorded in the annual rings of trees. Through his observation of the stems of spruce, K. Metzger, a German forester and author, realized that the final goal of the adaptive growth exhibited by biological structures over time is to achieve uniform stress distribution within them. He published his discovery in 1893.12 A team of scientists at Karlsruhe Research Centre adopted Metzger's observations and developed them to one single design rule: the axiom of uniform stress. The methods derived from this rule are simple and brutally successful like nature itself. An excellent account of the uniform-stress axiom and the optimization methods derived from it is given by Claus Mattheck in his book ‘Design in Nature’.13 The present study utilizes one of these methods, stress-induced material transformation (SMT), to optimize the cavity shape of dental restorations.
Explanation:
Thymine has a methyl group and is better suited for the storage property of the DNA molecule as it is far more stable compared to Uracil.
RNA contain Uracil instead of thymine so as to make differentiation of RNA molecule from DNA molecules easier.
Answer:
(B) open stomata only at night, limiting water loss because of heat and low humidity.
Explanation:
CAM plants are found in the regions characterized by very hot and dry environmental conditions. These plants reduce the water loss through transpiration by exhibiting CAM photosynthesis.
They open the stomata during night time when the air is cooler and rich in moisture. They take in CO2 during night time and fix it into the oxaloacetate which in turn is converted into malate and is stored in the vacuoles.
During day time, stomata remain closed to prevent water loss and the CO2 trapped during night time (released by decarboxylation of malate) enter the Calvin cycle.
The atmospheric temperature (varying according to pressure and humidity) below which water droplets begin to condense and dew can form.