Answer:
what is 52437 rounded to the bearest hundred
Answer:
a. x = -9 or x = -2
b. -5(x - 4)
c. x = -3 or x = 5
d. x = ±7
Step-by-step explanation:
a. First person;
y = x² + 11x + 18
y = x² + 9x + 2x + 18
y = x(x + 9) + 2(x + 9)
y = (x + 9)(x + 2)
y = x = -9 or x = -2
b. Second person;
y = -5x + 20
The common factor is 5.
y = -5(x - 4)
c. Third person;
y = x² - 2x - 15
y = x² - 5x + 3x - 15
y = x(x - 5) + 3(x - 5)
y = (x + 3)(x - 5)
y = x = -3 or x = 5
d. Fourth person;
y = x² - 49
Applying the difference of squares formula;
(a² - b²) = (a - b)(a + b)
y = x² - 49 = x² - 7² = (x - 7)(x + 7)
y = (x - 7)(x + 7)
y = x = ±7
Answer:
3:4
Step-by-step explanation:
there are 3 sides on a triangle and 4 on a square
Answer:
36
Step-by-step explanation:
1^3 + 2^3 + 3^3= 1+8+27
9+27= 36
1
Simplify \frac{1}{2}\imath n(x+3)21ın(x+3) to \frac{\imath n(x+3)}{2}2ın(x+3)
\frac{\imath n(x+3)}{2}-\imath nx=02ın(x+3)−ınx=0
2
Add \imath nxınx to both sides
\frac{\imath n(x+3)}{2}=\imath nx2ın(x+3)=ınx
3
Multiply both sides by 22
\imath n(x+3)=\imath nx\times 2ın(x+3)=ınx×2
4
Regroup terms
\imath n(x+3)=nx\times 2\imathın(x+3)=nx×2ı
5
Cancel \imathı on both sides
n(x+3)=nx\times 2n(x+3)=nx×2
6
Divide both sides by nn
x+3=\frac{nx\times 2}{n}x+3=nnx×2
7
Subtract 33 from both sides
x=\frac{nx\times 2}{n}-3x=nnx×2−3