Answer:
a) X 1 2 3 4 5
P(X) 0.7 0.15 0.10 0.03 0.02
b) 
c) ![P(X >3) = 1-P(X \leq 3) = 1-[P(X=1) +P(X=2)+P(X=3)]=1-[0.7+0.15+0.1]= 0.05](https://tex.z-dn.net/?f=%20P%28X%20%3E3%29%20%3D%201-P%28X%20%5Cleq%203%29%20%3D%201-%5BP%28X%3D1%29%20%2BP%28X%3D2%29%2BP%28X%3D3%29%5D%3D1-%5B0.7%2B0.15%2B0.1%5D%3D%200.05)
d) 
e) 
![Var(X) = E(X^2) -[E(X)]^2= 3.18- (1.52)^2 = 0.8996](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20-%5BE%28X%29%5D%5E2%3D%203.18-%20%281.52%29%5E2%20%3D%200.8996)

Step-by-step explanation:
Part a
From the information given we define the probability distribution like this:
X 1 2 3 4 5
P(X) 0.7 0.15 0.10 0.03 0.02
And we see that the sum of the probabilities is 1 so then we have a probability distribution
Part b
We want to find this probability:

Part c
We want to find this probability 
And for this case we can use the complement rule and we got:
![P(X >3) = 1-P(X \leq 3) = 1-[P(X=1) +P(X=2)+P(X=3)]=1-[0.7+0.15+0.1]= 0.05](https://tex.z-dn.net/?f=%20P%28X%20%3E3%29%20%3D%201-P%28X%20%5Cleq%203%29%20%3D%201-%5BP%28X%3D1%29%20%2BP%28X%3D2%29%2BP%28X%3D3%29%5D%3D1-%5B0.7%2B0.15%2B0.1%5D%3D%200.05)
Part d
We can find the expected value with this formula:

Part e
For this case we need to find first the second moment given by:

And we can find the variance with the following formula:
![Var(X) = E(X^2) -[E(X)]^2= 3.18- (1.52)^2 = 0.8996](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20-%5BE%28X%29%5D%5E2%3D%203.18-%20%281.52%29%5E2%20%3D%200.8996)
And we can find the deviation taking the square root of the variance:
