<em><u>Question:</u></em>
Set up a right triangle model for this problem and solve by using a calculator. Follow the models above,
A photographer stands 60 yards from the base of a lighthouse and observes that the angle between the ground and the top of the lighthouse is 41° How tall is the lighthouse?
<em><u>Answer:</u></em>
The height of lighthouse is 52.2 yards
<em><u>Solution:</u></em>
Given that photographer stands 60 yards from the base of a lighthouse and observes that the angle between the ground and the top of the lighthouse is 41 degree
The diagram is attached below
Consider a right angled triangle ABC
AB is the height of the lighthouse
BC is the distance between the base of a lighthouse and Photographer
As per given, BC = 60 yards
Angle between the ground and the top of the lighthouse is 41 degree
Angle ACB = 41 degree
To find: height of lighthouse i.e AB = ?
We know that,

Here Base is BC and perpendicular is AB

Substituting the values,

Thus the height of lighthouse is 52.2 yards