Answer:
3 : 6 : 9, 1 : 2 : 3, 30 : 60 : 90, 15 : 30 : 45, 2 : 4 : 6
Step-by-step explanation:
common numbers
let's firstly convert the mixed fractions to improper fractions and then divide.
![\bf \stackrel{mixed}{17\frac{13}{18}}\implies \cfrac{17\cdot 18 +13}{18}\implies \stackrel{improper}{\cfrac{319}{18}}~\hfill \stackrel{mixed}{2\frac{7}{9}}\implies \cfrac{2\cdot 9+7}{9}\implies \stackrel{improper}{\cfrac{25}{9}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B17%5Cfrac%7B13%7D%7B18%7D%7D%5Cimplies%20%5Ccfrac%7B17%5Ccdot%2018%20%2B13%7D%7B18%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B319%7D%7B18%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B7%7D%7B9%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%209%2B7%7D%7B9%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B25%7D%7B9%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf \cfrac{319}{18}\div \cfrac{25}{9}\implies \cfrac{319}{\underset{2}{~~\begin{matrix} 18 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}\cdot \cfrac{\stackrel{1}{~~\begin{matrix} 9 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}{25}\implies \cfrac{319}{50}\implies 6\frac{19}{50}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B319%7D%7B18%7D%5Cdiv%20%5Ccfrac%7B25%7D%7B9%7D%5Cimplies%20%5Ccfrac%7B319%7D%7B%5Cunderset%7B2%7D%7B~~%5Cbegin%7Bmatrix%7D%2018%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%5Ccdot%20%5Ccfrac%7B%5Cstackrel%7B1%7D%7B~~%5Cbegin%7Bmatrix%7D%209%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%7B25%7D%5Cimplies%20%5Ccfrac%7B319%7D%7B50%7D%5Cimplies%206%5Cfrac%7B19%7D%7B50%7D)
The basic form of the equation of a circle is:
x^2+y^2=r^2
where r^2 is the radius squared.
Looking at your equation, x^2+y^2=9, the radius is 3 (sqrt of 9 is 3)
Therefore, the graph B would be correct since the radius of the circle at all points is 3.
Hope I helped :)
Y = n
y = x^2 + n
n > 0
since there are 2 equations equal to y, set them equal to each other and solve.
n = x^2 + n
Subtract n from both sides.
0 = x*2
Take the square root of both sides.
x = 0