Answer:
- The independent variable is the concentration of sucralose present in the plant.
- The dependent variable is the growth rate of the plant.
Explanation:
The study designed through the steps of the scientific method would be done as follows:
Observation: Sucrose is a very important molecule for the development and growth of plants, based on which sucralose, which is formed from sucrose, can be important for the same factors.
Question: Can sucralose influence plant growth as well as sucrose?
Hypothesis: Sucralose may establish some influence on plant growth.
Experimentation: Select a number of seeds inoculated with sucralose molecules and select the same number of seeds that were not inoculated with anything. Provide the same type of soil and environmental factors so that seeds can grow in the same way. Weekly evaluate the growth of the plants generated by each seed for a certain period of time. After this period of time, measure the weight of the plants and their roots. Place the plant and root to dry in an oven and measure the weight of the plant and root once again.
Analysis of results: compare the average weekly growth of plants generated by inoculated seeds, with plants generated from uninoculated seeds. Compare the average weight of plants generated by seed inoculated before and after kiln-dried. Compare the weight average between plant roots generated by inoculated seeds before and after kiln-dried. Assess whether there was a significant difference between the means.
Conclusion: Using the data presented in the evaluation of the experiment, state whether the hypothesis developed provides true or false information.
<u><em>Note: it is important that the seeds are from the same species of plant.</em></u>
I would say d. Multi-part protein that reversibly binds to oxygen molecules (...)
Answer:
The flower contains the reproductive parts of the plant that are female part- gynoecium and the male part -androecium. These parts help in reproduction as when the stigma of the gynoecium receives the pollen grains from the anther of androecium part fertilisation takes place and it forms a zygote
Explanation:
A sea breeze describes the wind that blows from the ocean inland towards land. This breeze occurs most often in the spring and summer months because of the greater temperature differences between the ocean and nearby land, particularly in the afternoon when the land is at maximum heating from the sun.
During the day, the sun heats up both the ocean surface and the land. Water is a good absorber of the energy from the sun. The land absorbs much of the sun’s energy as well. However, water heats up much more slowly than land and so the air above the land will be warmer compared to the air over the ocean. The warm air over the land will rise throughout the day, causing low pressure at the surface. Over the water, the high surface pressure will form because of the colder air. To compensate, the air will sink over the ocean. The wind will blow from the higher pressure over the water to lower pressure over the land causing the sea breeze. The sea breeze strength will vary depending on the temperature difference between the land and the ocean.
At night, the roles reverse. The air over the ocean is now warmer than the air over the land. The land loses heat quickly after the sun goes down and the air above it cools too. This can be compared to a blacktop road. During the day, the blacktop road heats up and becomes very hot to walk on. At night, however, the blacktop has given up the added heat and is cool to the touch. The ocean, however, is able to hold onto this heat after the sun sets and not lose it as easily. This causes the low surface pressure to shift to over the ocean during the night and the high surface pressure to move over the land. This causes a small temperature gradient between the ocean surface and the nearby land at night and the wind will blow from the land to the ocean creating the land breeze.