Answer:
Each side of the L-shaped sidewalk is 126 m and 32m respectively.
Step-by-step explanation:
Given:
Total length of the sidewalk = 158 meters
Cutting across the lawn the distance = 130 meters
The L-shaped lawn will be treated as a right angled triangle.
So the 130 m distance is the hypotenuse here.
Let one side of the L-shaped lawn be 'x' meter so the another side will be (158-x) meters.
Applying Pythagoras formula.

So,
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
⇒ 
⇒
Applying quadratic formula;
Quadratic formula :
where a=1 and b=-158 and c=4032
So the value of x= 126 and 32.
The length of each side of the sidewalk is 'x'= 126 m and '(158-x)'='(158-126)'=32 m
Y = 1 + i
<span>(1 + i)^3 - 3 * (1 + i)^2 + k - 1 = -i </span>
<span>(1 + 3i + 3i^2 + i^3) - 3 * (1 + 2i + i^2) + k - 1 = -i </span>
<span>1 + 3i - 3 - i - 3 - 6i + 3 + k - 1 = -i </span>
<span>1 - 3 - 3 + 3 - 1 + 3i - i - 6i + k = -i </span>
<span>-3 - 4i + k = -i </span>
<span>k = 4i - i + 3 </span>
<span>k = 3i + 3 </span>
<span>k = 3 * (1 + i) </span>
<span>k = 3y</span>
X=$7 | 1 Ticket= x | 1 Ticket = $7
THat would be option c Her cahnge in points would be 4 * -6 = -24.
Answer:
answer E
Step-by-step explanation: