1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Free_Kalibri [48]
3 years ago
7

Write an equation of the line that passes through the points (2,-8) and (1,7). Put your answer in fully reduced point slope form

unless it is a vertical or horizontal line
Mathematics
1 answer:
nikdorinn [45]3 years ago
6 0

Answer:

Equation of line is:

y=-15x+22

Step-by-step explanation:

Given points:

(2,-8) and (1,7)

To write the equation in point slope form.

Solution:

In order to find the equation of line, we will find the slope of the line by slope formula.

The slope m of the line passing through points (x_1,y_1) and (x_2,y_2) is given as:

m=\frac{y_2-y_1}{x_2-x_1}

Thus, slope of given line can be given as:

m=\frac{7-(-8)}{1-2}

m=\frac{7+8}{-1}

m=\frac{15}{-1}

∴ m=-15

The point slope of the equation for line with slope m passing through point (x_1,y_1) is given as:

y-y_1=m(x-x_1)

Using point (1,7) to find the equation of line.

y-7=-15(x-1)

Using distribution.

y-7=-15x+15

Adding 7 both sides.

y-7+7=-15x+15+7

y=-15x+22  [Answer]

You might be interested in
Which statements about the local maximums and minimums for the given function are true? Choose three options.
Nataliya [291]

The statements about the local maximums and minimums for the given function which are true include:

  • Over the interval [2, 4], the local minimum is –8.
  • Over the interval [3, 5], the local minimum is –8.
  • Over the interval [1, 4], the local maximum is 0.

<h3>What is Function?</h3>

This is defined as the mathematical entities which assign unique outputs to given inputs and defines a relationship between the two variables.

According the the graph: over the interval [2, 4], the local minimum is –8 because the given minimum point is (3.4, -8) and over the interval [3, 5], the local minimum is –8.

Over the interval [1, 4], the local maximum is 0 and over the interval [3, 5], there is no maximum point hence why it is false.

Read more about Maximum and minimum point here brainly.com/question/4175575

#SPJ1

5 0
2 years ago
What is the value of a?<br> 45°<br> (2x-5)
aniked [119]

Answer:

x=70

Step-by-step explanation:

To solve this problem, you set up the equation 45+(2x-5)=180

Next, subtract 45 from 180 to get the equation 2x-5=135

After that, add 5 to 135 to get 2x=140

Divide 140 by 2 to get X=70

7 0
3 years ago
Araceli uses 7.7 pints of white paint and blue paint to paint her bedroom walls.
Dima020 [189]

Answer:

3.08

Step-by-step explanation:

1 - 3/5 = 2/5

2/5 x 7.7 = 3.08

5 0
3 years ago
The measure of each angle in the triangle
telo118 [61]
M of A = x
m of B = 2x-7
m of C = 2x+2

By the angle sum property of a triangle, we know that all the angles of a triangle add up to 180 degrees.

Thus we can create a linear equation

x + 2x-7 + 2x+2 = 180
4x = 185
x = 185/4
x = 46.25

Thus
m of A = 46.25
m of B = 2(46.25) -7 = 85.5
m of C = 2(46.25) +2 = 90.5
4 0
3 years ago
Two hoses are filling a pool the first hose fills at a rate of x gallons per minute the second hose fills at a rate of 15 gallon
Zielflug [23.3K]

Answer:

B. (0, 5]∪(15,30] only (15,30] contains viable rates for the hoses.

Step-by-step explanation:

The question is incomplete. Find the complete question in the comment section.

For us to meet the pool maintenance company's schedule, the pool needs to fill at a combined

rate of at least 10 gallons per minute. If the inequality represents the combined rates of the hoses is 1/x+1/x-15≥10 we are to find all solutions to the inequality and identifies which interval(s) contain viable filling rates for the  hoses. On simplifying the equation;

\frac{1}{x} + \frac{1}{x-15} \geq \frac{1}{10}\\\\ find\ the \  LCM \ of \ the function \ on \ the \ LHS\\\\\frac{x-15+x}{x(x-15)} \geq \frac{1}{10}\\\\\frac{2x-15}{x(x-15)} \geq  \frac{1}{10}\\\\10(2x-15)\geq x(x-15)\\\\20x-150\geq x^2-15x\\\\collect \ like \ terms\\-x^2+20x+15x - 150\geq 0\\

-x^2+35x-150 \geq 0\\\\multipply \ through \ by \ minus\\x^2-35x+150 \leq  0\\\\(x^2-5x)-(30x+150) \leq  0\\\\x(x-5)-30(x-5) \leq 0\\\\

(x-5)(x-30) \leq 0\\\\x-5 \leq 0 and x - 30 \leq 0\\\\x \leq  5 \ and \ x \leq 30

The interval contains all viable rate are values of x that are less than 30. The range of interval is (0, 5]∪(15,30]. Since the pool needs to fill at a combined  rate of <em>at least 10 gallons per minute</em> for the pool to meet the company's schedule, <em>this means that the range of value of gallon must be more than 10, hence (15, 30] is the interval that contains the viable rates for the hoses.</em>

6 0
3 years ago
Other questions:
  • Find the magnitude and direction of the vector. Round the length to the nearest tenth and the degree to the nearest unit. Diagra
    7·1 answer
  • Evaluate the integral of 17/(x^(3)-125)
    15·1 answer
  • Correct order of (1/2)2,0.75,2/3
    7·1 answer
  • Which expression does not belong with the other three? explain your answer
    8·2 answers
  • Can somebody help me-
    15·2 answers
  • Rod is paid an overtime rate of $25 per hour after he earns his basic wage of $600 per week. Write an equation in slope-intercep
    13·1 answer
  • When you walk at an average speed of 4 m/s, in 5 s you'll cover a distance of?
    6·2 answers
  • Analyze the solution set of the following system by
    9·2 answers
  • Including a 7% sales tax, an inn charges $147.66 per night. Find the inn’s nightly cost before tax is added.
    13·1 answer
  • The ladder to the slide is 21 feet high. how long is the slide
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!