I hope the choices for the numerators of the solutions are given.
I am showing the complete work to find the solutions of this equation , it will help you to find an answer of your question based on this solution.
The standard form of a quadratic equation is :
ax² + bx + c = 0
And the quadratic formula is:
x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
So, first step is to compare the given equation with the above equation to get the value of a, b and c.
So, a = 10, b = -19 and c = 6.
Next step is to plug in these values in the above formula. Therefore,




So, 

So, 
Hope this helps you!