Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ
Use the Sum/Difference Identities:
sin(α + β) = sinα · cosβ + cosα · sinβ
cos(α - β) = cosα · cosβ + sinα · sinβ
Use the Unit circle to evaluate: sin45 = cos45 = √2/2
Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ
Use the Pythagorean Identity: cos²Ф + sin²Ф = 1
<u />
<u>Proof LHS → RHS</u>
LHS: 2sin(45 + 2A) · cos(45 - 2A)
Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)
Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]
Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]
Distribute: cos²2A + 2cos2A·sin2A + sin²2A
Pythagorean Identity: 1 + 2cos2A·sin2A
Double Angle: 1 + sin4A
LHS = RHS: 1 + sin4A = 1 + sin4A 
To find the y-intercept: replace x with 0
to find the x-intercept: replace y with 0
x-int:
0 = 10x - 32
32 = 10x
x = 3.2
(3.2, 0)
y-int:
y = 10(0) - 32
y = -32
(0, -32)
Take the decimal and multiply it by 100.
Answer:
C (1,2)
Step-by-step explanation:
The point that is a solution must satisfy both inequalities;
The inequalities are;


Point A

: True
:False
Point B (0,4)
: False
:True
Point C (1,2)
: True
:True
Point D(-2,-4)
: True
:False
The correct answer is C.
Answer:
8y=-11x-48
You have to subtract 11x bc the standard for is y=mx+b