<h2>
Rate at which area is increasing is 1.08 m²/s.</h2>
Step-by-step explanation:
Area of triangle is with side a and b and angle C between them is given by
A = 0.5 ab SinC
Here we need to find how area changes with a and b fixed and C is changing,

We have
a = 8 m
b = 9 m

Substituting

Rate at which area is increasing is 1.08 m²/s.
Let the distance of the first part of the race be x, and that of the second part, 15 - x, then
x/8 + (15 - x)/20 = 1.125
5x + 2(15 - x) = 40 x 1.125
5x + 30 - 2x = 45
3x = 45 - 30 = 15
x = 15/3 = 5
Therefore, the distance of the first part of the race is 5 miles and the time is 5/8 = 0.625 hours or 37.5 minutes
The distance of the second part of the race is 15 - 5 = 10 miles and the time is 1.125 - 0.625 = 0.5 hours or 30 minutes.
Answer:
|-9| = 9
That is the absolute value for the loss of yards
Answer:
1a. y-intercept: 12
1b. slope: -3/2
1c. equation: y = -3/2x +12
2a. y-intercept: -9
2b. slope: 2
2c. equation: y = 2x -9
Step-by-step explanation:
<h3>1.</h3>
A) We observe the pattern to be <em>x-values in the table increase by 2, while y-values in the table decrease by 3</em>. We notice the first x-value is 2, so extending the table upward to x=0 would tell us the y-intercept. That is, adding 3 to the first y-value will give the y-intercept as (x, y) = (0, 12).
B) We have already observed that the "rise" (change in y) is -3 for each "run" (change in x) of 2. The slope is the ratio of these changes:
slope = m = rise/run = -3/2
C) From the above, we know that m=-3/2 and b=12. Putting these values into the equation for the line gives ...
y = -3/2x +12
__
<h3>2.</h3>
A) We observe the pattern to be <em>y-values increase by 2 while x-values increase by 1</em>. As before, we can find the point that would go before the first one shown in the table. It will have an x-value of 0 and a y-value of -9.
the y-intercept is -9
the slope is 2/1 = 2
the equation is y = 2x -9