Answer:
The expression 1.02^(4+n) can be used because 1.02^4 * 1.02^2= 1.02^(4+n) AND this is option C.
Step-by-step explanation:
For 4 + N years = (1 + 2/100)^(4+N)
= 1.02 ^ (4+N)
Remember, that the number of years is increased by N and interest rate remain the same, and n is years, and which is now 4+ N.
Height of the water increasing is at rate of 
<h3>How to solve?</h3>
With related rates, we need a function to relate the 2 variables, in this case it is clearly volume and height. The formula is:

There is radius in the formula, but in this problem, radius is constant so it is not a variable. We can substitute the value in:

Since the rate in this problem is time related, we need to implicitly differentiate wrt (with respect to) time:

In the problem, we are given
So we need to substitute this in:

Hence, Height of the water increasing is at rate of 
<h3>Formula used: </h3>

To Learn more visit:
brainly.com/question/4313883
#SPJ4
They can be divided into
2 groups of 16
4 groups of 8
8 groups of 4
16 groups of 2
Perhaps the easiest way to find the midpoint between two given points is to average their coordinates: add them up and divide by 2.
A) The midpoint C' of AB is
.. (A +B)/2 = ((0, 0) +(m, n))/2 = ((0 +m)/2, (0 +n)/2) = (m/2, n/2) = C'
The midpoint B' is
.. (A +C)/2 = ((0, 0) +(p, 0))/2 = (p/2, 0) = B'
The midpoint A' is
.. (B +C)/2 = ((m, n) +(p, 0))/2 = ((m+p)/2, n/2) = A'
B) The slope of the line between (x1, y1) and (x2, y2) is given by
.. slope = (y2 -y1)/(x2 -x1)
Using the values for A and A', we have
.. slope = (n/2 -0)/((m+p)/2 -0) = n/(m+p)
C) We know the line goes through A = (0, 0), so we can write the point-slope form of the equation for AA' as
.. y -0 = (n/(m+p))*(x -0)
.. y = n*x/(m+p)
D) To show the point lies on the line, we can substitute its coordinates for x and y and see if we get something that looks true.
.. (x, y) = ((m+p)/3, n/3)
Putting these into our equation, we have
.. n/3 = n*((m+p)/3)/(m+p)
The expression on the right has factors of (m+p) that cancel*, so we end up with
.. n/3 = n/3 . . . . . . . true for any n
_____
* The only constraint is that (m+p) ≠ 0. Since m and p are both in the first quadrant, their sum must be non-zero and this constraint is satisfied.
The purpose of the exercise is to show that all three medians of a triangle intersect in a single point.