Answer:
Premium is likely to be $180.00
Explanation:
Two players have 40% chance of slipping
Equally,two players have 20% chance of slipping
bruise cost per slip is $150
Premium=40% chance of slipping*bruise cost*2 players +20% chance of slipping*bruise cost*2 players
Premium=40%*$150*2+20%*$150*2
Premium=0.4*$150*2+0.2*$150*2
premium=$60*2+$30*2
premium=$120+$60
premium=$180.00
If the insurance company offers bruise insurance to the players ,the premium is likely to be in the region of $180.00
Answer: The answer is A.
Explanation: The student was given admission to Oxnard University. and he was admitted unconditionally .
Stimulant. Stimulants are types of drugs that speed up the central nervous system.
A savings account that pays interest every month is said to have a quarterly interest period.
Po = 0.5385, Lq = 0.0593 boats, Wq = 0.5930 minutes, W = 6.5930 minutes.
<u>Explanation:</u>
The problem is that of Multiple-server Queuing Model.
Number of servers, M = 2.
Arrival rate,
= 6 boats per hour.
Service rate,
= 10 boats per hour.
Probability of zero boats in the system,
= 0.5385
<u>Average number of boats waiting in line for service:</u>
Lq =![[\lambda.\mu.( \lambda / \mu )M / {(M – 1)! (M. \mu – \lambda )2}] x P0](https://tex.z-dn.net/?f=%5B%5Clambda.%5Cmu.%28%20%5Clambda%20%2F%20%5Cmu%20%29M%20%2F%20%7B%28M%20%E2%80%93%201%29%21%20%28M.%20%5Cmu%20%E2%80%93%20%5Clambda%20%292%7D%5D%20x%20P0)
=
= 0.0593 boats.
The average time a boat will spend waiting for service, Wq = 0.0593 divide by 6 = 0.009883 hours = 0.5930 minutes.
The average time a boat will spend at the dock, W = 0.009883 plus (1 divide 10) = 0.109883 hours = 6.5930 minutes.