1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zinaida [17]
3 years ago
15

Help me I need the answer ASAP ! Aundrea painted the background of a square mural on the wall using 138ft^2 of paint .which meas

urement is closest to the side length of this mural in feet ?
A.69 ft
B.12 ft
C.139 ft
D.35 ft
Mathematics
1 answer:
Klio2033 [76]3 years ago
8 0

Hey there! I'm happy to help!

Since this mural is a square, all the sides are the same. This means that you square on of the sides to get the area (multiply it by itself). If we have the area and want to find a side, we just go backwards and use something called the square root!

If we plug this into our calculators...

√138≈11.74734

We see that is closest to B. 12 ft.

You could also figure this out without a calculator. 138 is very close to 144, which is 12². All the other answer options are way too big.

Have a wonderful day! :D

You might be interested in
Find the equation of the line that passes through the point of intersection of x + 2y = 9 and 4x -2y = -4 and the point of inter
Rudik [331]

Answer:

y=-6x+10

Step-by-step explanation:

The point of intersection of

x+2y=9...eqn1


and


4x-2y=-4...eqn2

is the solution of the two equations.


We add equation (1) and equation(2) to get,

x+4x+2y-2y=9+-4


\Rightarrow 5x=5


\Rightarrow x=1

We put x=1 into equation (1) to get,

1+2y=9

\Rightarrow 2y=9-1

\Rightarrow 2y=8

\Rightarrow y=4


Therefore the line passes through the point, (1,4).


The line also passes through the point of intersection of

3x-4y=14...eqn(3)

and

3x+7y=-8...eqn(4)

We subtract equation (3) from equation (4) to obtain,

3x-3x+7y--4y=-8-14


\Rightarrow 11y=-22

\Rightarrow y=-2


We substitute this value into equation (4) to get,

3x+7(-2)=-8


3x-14=-8


3x=-8+14


3x=6

x=2

The line also passes through

(2,-2)



The slope of the line is

slope=\frac{4--2}{1-2} =\frac{6}{-1}=-6


The equation of the line is

y+2=-6(x-2)

y+2=-6x+12


y=-6x+10 is the required equation





4 0
3 years ago
The profit P (in thousands of dollars) for a company spending an amount s (in thousands of dollars on advertising is
sattari [20]

Answer:

The company should spend $40 to yield a maximum profit.

The point of diminishing returns is (40, 3600).

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

Coordinate Planes

  • Coordinates (x, y) → (s, P)

Functions

  • Function Notation

Terms/Coefficients

  • Factoring/Expanding

Quadratics

<u>Algebra II</u>

Coordinate Planes

  • Maximums/Minimums

<u>Calculus</u>

Derivatives

  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

1st Derivative Test - tells us where on the function f(x) does it have a relative maximum or minimum

  • Critical Numbers

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle P = \frac{-1}{10}s^3 + 6s^2 + 400

<u>Step 2: Differentiate</u>

  1. [Function] Derivative Property [Addition/Subtraction]:                               \displaystyle P' = \frac{dP}{ds} \bigg[ \frac{-1}{10}s^3 \bigg] + \frac{dP}{ds} [ 6s^2 ] + \frac{dP}{ds} [ 400 ]
  2. [Derivative] Rewrite [Derivative Property - Multiplied Constant]:               \displaystyle P' = \frac{-1}{10} \frac{dP}{ds} \bigg[ s^3 \bigg] + 6 \frac{dP}{ds} [ s^2 ] + \frac{dP}{ds} [ 400 ]
  3. [Derivative] Basic Power Rule:                                                                     \displaystyle P' = \frac{-1}{10}(3s^2) + 6(2s)
  4. [Derivative] Simplify:                                                                                     \displaystyle P' = -\frac{3s^2}{10}  + 12s

<u>Step 3: 1st Derivative Test</u>

  1. [Derivative] Set up:                                                                                       \displaystyle 0 = -\frac{3s^2}{10}  + 12s
  2. [Derivative] Factor:                                                                                       \displaystyle 0 = \frac{-3s(s - 40)}{10}
  3. [Multiplication Property of Equality] Isolate <em>s </em>terms:                                   \displaystyle 0 = -3s(s - 40)
  4. [Solve] Find quadratic roots:                                                                         \displaystyle s = 0, 40

∴ <em>s</em> = 0, 40 are our critical numbers.

<u>Step 4: Find Profit</u>

  1. [Function] Substitute in <em>s</em> = 0:                                                                       \displaystyle P(0) = \frac{-1}{10}(0)^3 + 6(0)^2 + 400
  2. [Order of Operations] Evaluate:                                                                   \displaystyle P(0) = 400
  3. [Function] Substitute in <em>s</em> = 40:                                                                     \displaystyle P(40) = \frac{-1}{10}(40)^3 + 6(40)^2 + 400
  4. [Order of Operations] Evaluate:                                                                   \displaystyle P(40) = 3600

We see that we will have a bigger profit when we spend <em>s</em> = $40.

∴ The maximum profit is $3600.

∴ The point of diminishing returns is ($40, $3600).

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation (Applications)

5 0
2 years ago
Convert 3 quarts to pints.​
Pavlova-9 [17]
It should be 6 pints
8 0
3 years ago
Read 2 more answers
If a coin is thrown with a starting velocity of 0 m/s down a dry well and hits bottom in 1.2 s, what's the depth of the well? Wi
BigorU [14]

Answer:

Depth = 7.06 m

Velocity = 11.77 ms-1

Step-by-step explanation:

We use the equation of motion:-

s = ut + 1/2 gt^{2}   where s = distance fallen , t = time , u = initial velocity and g = 9.81 ms^-2 , the acceleration due to gravity.

So s = 0(t) + 1/2 * 9.81 (1.2)^2

= 7.06 m to nearest tenth.

We use another equation of motion to find the final velocity:-

v^2 = u^2 + 2gs    where v = final velocity

v^2 = 0 + 2*9.81 * 7.06

= 138.52

v = √138.52 = 11.77 m s-1


5 0
3 years ago
What is the mode of the data set shown below?
viktelen [127]

Answer:

2 (D)

Step-by-step explanation:

it comes up the most (2 times )

4 0
3 years ago
Read 2 more answers
Other questions:
  • What is the solution of this equation? 1/3y = -7
    8·1 answer
  • Write the equation of a line, in SLOPE INTERCEPT FORM, that is perpendicular to the given equation and passes through the given
    11·1 answer
  • If x^2=20 what is the value of x
    14·2 answers
  • 2+10 x 5 - 9 idk the answer​
    10·2 answers
  • The cost of 10 oranges is 1.00 what is the cost of 5 dozen oranges
    10·2 answers
  • The polygons are similar. Find the value of X and Y. (PLEASE HELP⚠️⚠️)
    8·2 answers
  • Katherine has 4 red pens, 6 blue pens, and 11 black pens in her book bag. If she randomly pulls out one pen, what is the probabi
    11·1 answer
  • X + 7 = 16<br> X = 16 - 7
    13·2 answers
  • Question 2 (4 points)
    10·1 answer
  • What is the slope of the equation Y=5/4x-7/4?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!