Answer:
1c

1d

Step-by-step explanation:
From the question we are told that
The probability of telesales representative making a sale on a customer call is 
The mean is 
Generally the distribution of sales call made by a telesales representative follows a binomial distribution
i.e
and the probability distribution function for binomial distribution is
Here C stands for combination hence we are going to be making use of the combination function in our calculators
Generally the mean is mathematically represented as

=> 
=> 
Generally the least number of calls that need to be made by a representative for the probability of at least 1 sale to exceed 0.95 is mathematically represented as

=> 
=> ![P( X \ge 1) = 1 - [ ^{n}C_0 * (0.15 )^0 * (1- 0.15)^{n-0}] > 0.95](https://tex.z-dn.net/?f=P%28%20X%20%5Cge%201%29%20%3D%201%20-%20%5B%20%5E%7Bn%7DC_0%20%2A%20%20%280.15%20%29%5E0%20%2A%20%20%281-%200.15%29%5E%7Bn-0%7D%5D%20%3E%200.95)
=> ![1 - [1 * 1* (0.85)^{n}] > 0.95](https://tex.z-dn.net/?f=%201%20-%20%5B1%20%20%2A%20%201%2A%20%20%280.85%29%5E%7Bn%7D%5D%20%3E%200.95)
=> ![[(0.85)^{n}] > 0.05](https://tex.z-dn.net/?f=%20%20%5B%280.85%29%5E%7Bn%7D%5D%20%3E%200.05)
taking natural log of both sides

=> 
Answer:
32 inches cubed
Step-by-step explanation:
Multiply the length by the width: 4*4=16
Multiply by 12: 16*1/2=8
Multiply by height: 4*8=32
Hope this helped!
Answer: 0.046
Step-by-step explanation:
From the question,
orange jelly beans= 7
Cherry jelly beans =9
Lemon jelly beans = 3
Licorice jelly beans = 15
Blueberry jelly beans = 6
Total jelly beans = 40
The probability of choosing the first cherry jelly beans will be = 9/40
After the first one is chosen, there'll be 8 cherry jelly beans and total of 39 left. The probability of choosing the second one will be = 8/39
The probability of choosing two cherry jelly beans in a row will be:
= 9/40 × 8/39
= 72/1560
= 0.046
Given
2x³ + (x³ - 3) sin(2πy) - 3y = 0
we first notice that when x = ³√3, we get
2 (³√3)³ + ((³√3)³ - 3) sin(2πy) - 3y = 0
2•3 + (3 - 3) sin(2πy) - 3y = 0
6 - 3y = 0
3y = 6
y = 2
Differentiating both sides with respect to x gives
6x² + 3x³ sin(2πy) + 2π (x³ - 3) cos(2πy) y' - 3y' = 0
Then when x = ³√3, we find
6(³√3)² + 3(³√3)³ sin(2π•2) + 2π ((³√3)³ - 3) cos(2π•2) y' - 3y' = 0
6•³√9 + 3•3 sin(4π) + 2π (3- 3) cos(4π) y' - 3y' = 0
6•³√9 + 0 + 0 - 3y' = 0
3y' = 6•³√9
y' = 2•³√9
(that is, 2 times the cube root of 9)