Answer:
ans is x=3
Step-by-step explanation:
2018 is the 70th term of the progression.
Explanation
We start out finding the common difference of the progression:
46-17 = 29
Now we write the explicit formula for the sequence. It is of the form

We set this equal to 2018 to see if the answer is a whole number. If it is, it will be the term number that gives us 2018:
2018=17+29(n-1)
Using the distributive property,
2018=17+29*n-29*1
2018=17+29n-29
Combine like terms:
2018=29n-12
Add 12 to both sides:
2018+12=29n-12+12
2030=29n
Divide both sides by 29:
2030/29=29n/29
70=n
Since n=70, this means 2018 is the 70th term of the sequence.
Answer:
(3, 3 )
Step-by-step explanation:
Given the 2 equations
3x - y = 6 → (1)
6x + y = 21 → (2)
Adding the 2 equations term by term will eliminate y, that is
(6x + 3x) + (y - y) = (21 + 6), that is
9x = 27 (divide both sides by 9 )
x = 3
Substitute x = 3 into either (1) or (2) and solve for y
Using (2), then
(6 × 3) + y = 21
18 + y = 21 ( subtract 18 from both sides )
y = 3
Solution is (3, 3 )
Answer:
About 1/4 scored higher and 3/4 scored lower
Step-by-step explanation:
84 is on the right side line
Each line represents 25 % of the score
It is 75 percent ( 3 lines) of the way
She scored higher than 75% of the students and lower than 25% of the students
About 1/4 scored higher and 3/4 scored lower
Answer:
The number of the television sets that is model p is 12
Step-by-step explanation:
Here we have total number of television sold = 40
The model p televisions sold for $30 less than the model q televisions
That is $P = $q - $30
Therefore
Let the quantity of the model p sold be X
Let the quantity of the model q sold be X
Therefore
x + y = 40
Total cost of the television = 40 * 141 = $5640
Therefore, 120*x + 90*y = 5640
Plugging in x = 40 - y in the above equation we get
4800 - 30y = 5640 or
y = -28 and
x = 68
If we put y = 40 - x we get
30x + 3600 = 5640
If we put
120*x + 150*y = 5640.........(3)
we get
x = 12 and y = 28
Therefore, since the model p sold for $30 less than the model q, from the solution of equation (3) the number of the television sets that is model p = 12