1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
geniusboy [140]
3 years ago
10

A 20 foot ladder leaning against a wall is used to reach a window that is 17 feet above the ground. How far from the wall is the

bottom of the ladder? Round to the nearest tenth of a foot.
Mathematics
1 answer:
GarryVolchara [31]3 years ago
8 0

The bottom of the ladder is 10.5 feet away from the wall

Step-by-step explanation:

The given scenario forms a right triangle.

Where

The length of ladder will be the hypotenuse

The wall on which the window is situated will ebt he perpendicular and

The distance between the foot of ladder and the wall will be the base

So,

Hypotenuse = H = 20 foot

Perpendicular = P = 17 feet

Base = B = ?

Using the Pythagoras theorem

H^2=P^2+B^2\\(20)^2=(17)^2+B^2\\400=289+B^2\\400-289=B^2\\B^2=111\\Taking\ square\ root\ on\ both\ sides\\\sqrt{B^2}=\sqrt{111}\\B=10.53\\Rounding\ off\ to\ the\ nearest\ tenth\\B=10.5

The bottom of the ladder is 10.5 feet away from the wall

Keywords: Triangle, Pythagoras Theorem

Learn more about Pythagoras theorem at:

  • brainly.com/question/9532142
  • brainly.com/question/9590016

#LearnwithBrainly

You might be interested in
A light bulb is designed by revolving the graph of:
nadya68 [22]

Answer:

\displaystyle 0.251327 \ in. \ of \ glass

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Expand by FOIL (First Outside Inside Last)
  • Factoring

<u>Calculus</u>

Differentiation

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integration

  • Integration Property: \displaystyle \int\limits^a_b {cf(x)} \, dx = c \int\limits^a_b {f(x)} \, dx
  • Fundamental Theorem of Calculus: \displaystyle \int\limits^a_b {f(x)} \, dx = F(b) - F(a)
  • Area between Two Curves
  • Volumes of Revolution
  • Arc Length Formula: \displaystyle AL = \int\limits^a_b {\sqrt{1+ [f'(x)]^2}} \, dx
  • Surface Area Formula: \displaystyle SA = 2\pi \int\limits^a_b {f(x) \sqrt{1+ [f'(x)]^2}} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}\\Interval: [0, \frac{1}{3}]

<u>Step 2: Differentiate</u>

  1. Basic Power Rule:                    \displaystyle y' = \frac{1}{2} \cdot \frac{1}{3}x^{\frac{1}{2} - 1} - \frac{3}{2} \cdot x^{\frac{3}{2} - 1}
  2. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6}x^{\frac{-1}{2}} - \frac{3}{2}x^{\frac{1}{2}}
  3. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute [Surface Area]:                                                                             \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{1+ [\frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}]^2}} \, dx
  2. [Integral - √Radical] Expand/Add:                                                               \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{81x^2+18x+1}{36x}} \, dx
  3. [Integral - √Radical] Factor:                                                                         \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{(9x + 1)^2}{36x}} \, dx
  4. [Integral - Simplify]:                                                                                       \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {-\frac{|9x + 1|(3x - 1)}{18}} \, dx
  5. [Integral] Integration Property:                                                                     \displaystyle SA = \frac{- \pi}{9} \int\limits^{\frac{1}{3}}_0 {|9x + 1|(3x - 1)} \, dx

<u>Step 4: Integrate Pt. 2</u>

  1. [Integral] Define:                                                                                             \displaystyle \int {|9x + 1|(3x - 1)} \, dx
  2. [Integral] Assumption of Positive/Correction Factors:                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {(9x + 1)(3x - 1)} \, dx
  3. [Integral] Expand - FOIL:                                                                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {27x^2 - 6x - 1} \, dx
  4. [Integral] Integrate - Basic Power Rule:                                                         \displaystyle \frac{9x + 1}{|9x + 1|} (9x^3 - 3x^2 - x)
  5. [Expression] Multiply:                                                                                      \displaystyle \frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|}

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] Substitute/Integral - FTC:                                                              \displaystyle SA = \frac{- \pi}{9} (\frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|})|\limits_{0}^{\frac{1}{3}}
  2. [Integrate] Evaluate FTC:                                                                                \displaystyle SA = \frac{- \pi}{9} (\frac{-1}{3})
  3. [Expression] Multiply:                                                                                     \displaystyle SA = \frac{\pi}{27} \ ft^2

<em>It is in ft² because it is given that our axis are in ft.</em>

<u>Step 6: Find Amount of Glass</u>

<em>Convert ft² to in² and multiply by 0.015 in (given) to find amount of glass.</em>

  1. Convert ft² to in²:                    \displaystyle \frac{\pi}{27} \ ft^2 \ \div 144 \ in^2/ft^2 = \frac{16 \pi}{3} \ in^2
  2. Multiply:                                   \displaystyle \frac{16 \pi}{3} \ in^2 \cdot 0.015 \ in = 0.251327 \ in. \ of \ glass

And we have our final answer! Hope this helped on your Calc BC journey!

5 0
3 years ago
Consider the equation 5+ x=n what must be true about any value of x if n is a negative number
nlexa [21]
Any value of x must be less than -5 for n to be negative. (x<-5)
5 0
3 years ago
Part A: describe the relationship between the temperature of the city and the number of cups of lemonade sold (2points)
malfutka [58]

Answer:

<u>gusuhuysh7zywjis</u><u> </u><u>uh</u><u> </u><u>sksisyysishs</u>

6 0
3 years ago
How to solve this? ​
nevsk [136]

Answer:

Answer of 17 is ㏒(x^{2}+15x), Answer of 33 is x = 8 , Answer of 35 is x = ㏒10/㏒2 , Answer of 37 is  x = -㏒12/㏒8 and Answer of 39 is x = 5

Step-by-step explanation:

17. ㏒x + ㏒(x+15)

     Using property ㏒a + ㏒b = ㏒a×b

     ∴ ㏒x + ㏒(x+15)

        ㏒x×(x+15)

        ㏒(x^{2}+15x)

        The answer is ㏒(x^{2}+15x)

33. 2^(x-5) = 8

     2^(x-5) = 2^3

      Using property 2^a = 2^b

      Then a = b

     ∴x-5 = 3

       x = 8

      The answer is x = 8

35. 2^x = 10

    Taking log on both sides gives

     ㏒2^x = ㏒10

     x×㏒2 = ㏒10

     x = ㏒10/㏒2

    The answer is x = ㏒10/㏒2

37. 8^-x = 12

    Taking log on both sides gives

     ㏒8^-x = ㏒12

     -x×㏒8 = ㏒12

      x = -㏒12/㏒8

    The answer is  x = -㏒12/㏒8

39. 5(2^3 × x) = 8

      5(8×x) = 8

      x = 5

    The answer is x=5

 

5 0
4 years ago
Can someone please help me with the question, a/4 = 15/12 a=?
malfutka [58]

Answer:

a = 5

Step-by-step explanation:

a/4 = 15/12

We can use cross products to solve

a* 12 = 4*15

12a = 60

Divide each side by 12

12a/12 = 60/12

a =5

7 0
3 years ago
Read 2 more answers
Other questions:
  • How much does $3,000 earn in 6 months at an interest rate of 4%, compounded quarterly?
    12·1 answer
  • "What is the sum of the measures of the interior angles formed by the boundary of this team pennant?
    11·1 answer
  • Using α = .05, what are the critical values for the test statistic? (to 2 decimals) (+ or -
    13·1 answer
  • A $7,000 motorcycle depreciates at 10% each year. Which value would represent the base of the exponential function that models t
    5·1 answer
  • Manuel has a $20 gift card to an electronics store and some money in his savings account. He can buy an item that is $20 more th
    10·1 answer
  • How many solutions does the system have?
    13·1 answer
  • Factor the trinomial<br> 3x^2+12x+9
    13·1 answer
  • Please Help Me!!! What is 81y + 54
    11·1 answer
  • 4. The table below represents some points of a linear function. What is the
    13·1 answer
  • 19. What are the values of a and bin each right<br> triangle? Explain.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!