Answer:
Step-by-step explanation:
To calculate the midpoint, you need to plug in the values of x and y into the midpoint formula.
M ( x1 + x2/2 , y1 + y2/2)
M [ -8 + 4/2 , -7 + 9/2]
M ( -2, 1)
Answer: 0.51
Step-by-step explanation:
This is a conditional probability. The first event is the airplane accident being caused by structural failure. The probability of it being due to structural failure is 0.3 and the probability of it not being due to structural failure is 0.7. The second event involves the diagnosis of the event. If a plane fails due to structural failure, the probability that it will be diagnosed and the results will say it was due to structural failure is 0.85, and the probability that the diagnosis is unable to identify that it was because of a structural failure is 0.15. If the plane were to fail as a result of some other reason aside structural failure, the probability that the diagnosis will show that it was as a result of structural failure is 0.35 and the probability of the diagnosis showing that is is not as a result of structural failure is 0.65. To find the probability that an airplane failed due to structural failure given that it was diagnosed that it failed due to some malfunction, this is the equation;
p = (probability of plane failing and diagnosis reporting that the failure was due to structural failure)/ (probability of diagnosis reporting that failure was due to structural failure)
p = (0.3*0.85)/((0.3*0.85) + (0.7*0.35))
p = 0.51
X= -1 and -11
Put -1 and -11 in for x. The answer comes out 6
An= mth term.
an=a₁+(n-1)*d
a₁₂=41
a₁₅=140
a₁₂=41
41=a₁+(12-1)*d
41=a₁+11d
a₁+11d=41 (1)
a₁₅=140
140=a₁+(15-1)*d
140=a₁+14d
a₁+14d=140 (2)
With the equiations (1) and (2) build a system of equations
a₁+11d=41
a₁+14d=140
we solve it.
-(a₁+11d=41)
a₁+14d=140
--------------------
3d=99 ⇒d=99/3=33
a₁+11d=41
a₁+(11*33)=41
a₁+363=41
a₁=41-363=-322
an=a₁+(n-1)*d
an=-322+(n-1)*33
an=-322+33n-33
an=-355+33n
an=-355+33n
To check:
a₁₂=-355+33*12=-355+396=41
a₁₅=-355+33*15=-355+495=140.