Answer:
162 square inch
Step-by-step explanation:
Area = Length * Width
Area = 
Answer:
$3
Step-by-step explanation:
1. Add the total of the price.
The total of the items cost $17.
2. Subtract the cost from the amount you are paying.
Sally gets $3 of change.
Answer:
C. The population must be normally distributed.
Step-by-step explanation:
Population distribution have to do with the classification of people living in a particular geographical area into different segment such as Age, Occupation, Sex, Geographical location.
For instance
If Age distribution is use, the total number of people living in say New york will classified into 0-10 11-19years 20-29years and so on
Sex distribution involves distribution into the male and Female Category
Occupation distribution of Population involves classification of occupant of an area according to their Job.. I.e.Drives-15 people, Lawyer =2 people and so on.
Geographical location distribution of population involves the classification of people living in a particular country according to their geographical names. I.e. Abuja=3.5million people etc.
<span>Given: Rectangle ABCD
Prove: ∆ABD≅∆CBD
Solution:
<span> Statement Reason
</span>
ABCD is a parallelogram Rectangles are parallelograms since the definition of a parallelogram is a quadrilateral with two pairs of parallel sides.
Segment AD = Segment BC The opposite sides of a parallelogram are Segment AB = Segment CD congruent. This is a theorem about the parallelograms.
</span>∆ABD≅∆CBD SSS postulate: three sides of ΔABD is equal to the three sides of ∆CBD<span>
</span><span>Given: Rectangle ABCD
Prove: ∆ABC≅∆ADC
</span>Solution:
<span> Statement Reason
</span>
Angle A and Angle C Definition of a rectangle: A quadrilateral
are right angles with four right angles.
Angle A = Angle C Since both are right angles, they are congruent
Segment AB = Segment DC The opposite sides of a parallelogram are Segment AD = Segment BC congruent. This is a theorem about the parallelograms.
∆ABC≅∆ADC SAS postulate: two sides and included angle of ΔABC is congruent to the two sides and included angle of ∆CBD