Answer:
yes
yes is answer of this equation

- Given - <u>two </u><u>points </u><u>P </u><u>(</u><u> </u><u>5</u><u> </u><u>,</u><u> </u><u>1</u><u>0</u><u> </u><u>)</u><u> </u><u>and </u><u>R </u><u>(</u><u> </u><u>1</u><u>2</u><u> </u><u>,</u><u> </u><u>1</u><u>4</u><u> </u><u>)</u><u> </u><u>on </u><u>the </u><u>c</u><u>artesian </u><u>plane</u>
- To find - <u>distance </u><u>between </u><u>the </u><u>two </u><u>points</u>
<u>Using </u><u>the </u><u>distance </u><u>formula</u> ~

we have ,

<u>substituting</u><u> </u><u>the </u><u>values </u><u>in </u><u>the </u><u>formula </u><u>,</u><u> </u><u>we </u><u>get</u>

hope helpful :)
Call the notebooks x, and the pencils y.
<span>3x + 4y = $8.50 and 5x + 8y = $14.50 </span>
<span>Then just solve as simultaneous equations: </span>
<span>3x + 4y = $8.50 </span>
<span>5x + 8y = $14.50 </span>
<span>5(3x + 4y = 8.5) </span>
<span>3(5x + 8y = 14.5) </span>
<span>15x + 20y = 42.5 </span>
<span>15x + 24y = 43.5 </span>
<span>Think: DASS (Different Add, Similar Subtract). 15x appears in both equations so subtract one equation from the other. Eassier to subtract (15x + 20y = 42.5) from (15x + 24y = 43.5) </span>
<span>(15x + 24y = 43.5) - (15x + 20y = 42.5) = (4y = 1) which means y = 0.25. </span>
<span>Then substitue into equation : </span>
<span>15x + 20y = 42.5 </span>
<span>15x + 5 + 42.5 </span>
<span>15x = 42.5 - 5 = 37.5 </span>
<span>15x = 37.5 </span>
<span>x = 2.5 </span>
<span>15x + 24y = 43.5 </span>
<span>15(2.5) + 24(0.25) </span>
<span>37.5 + 6 = 43.5 </span>
<span>So x (notebooks) are 2.5 ($2.50) each and y (pencils) are 0.25 ($0.25) each.</span>
Answer is B as it is a parabola