By definition of independence,
and
are independent if
. So neither the second nor third options can possibly be correct.
We have


which are not equal, so no,
and
are not independent because the probabilities are not equal (last option).
(f+g)(x)=0
f (x) + g (x)=0
now,
substitute their values
x^2 -4x + x -18 = 0
x^2 -3x -18 =0
x^2 - 6x + 3x - 18 =0
x (x-6) + 3 (x-6) = 0
(x-6)(x+3) = 0
we have to find it's zeroes (or roots) now:
x-6 =0
x = 6
x +3 =0
x = -3
If f(x)=6x+2,
f(x+3)=6(x+3)+2
f(x+3)=6x+18+2
f(x+3)=6x+20
Answer:
ED = 12
<em><u>HOPE </u></em><em><u>THIS </u></em><em><u>HELP </u></em><em><u>YOU </u></em><em><u>,</u></em><em><u> </u></em><em><u>FOR </u></em><em><u>ANY </u></em><em><u>QUESTION </u></em><em><u>PLEASE </u></em><em><u>ASK </u></em><em><u>ME </u></em><em><u>.</u></em>