The next one is 16 probably
        
             
        
        
        
9514 1404 393
Answer:
- s + a = 250
- 3s + 5a = 1050
Step-by-step explanation:
Let s and a represent the numbers of student and adult tickets sold. The system of equations that can be written from the given information is ...
   s + a = 250 . . . . . . total of tickets sold
   3s +5a = 1050 . . . dollar value of tickets sold
_____
The solution is (s, a) = (100, 150). 100 student tickets and 150 adult tickets were sold.
 
        
             
        
        
        
Answer:
-3
Step-by-step explanation:
A = midpoint
-17 + 5 = -12
-12/2 = -6 = A
-6 + 0 = -6
-6/2 = -3 = B
 
        
                    
             
        
        
        
To make it easier, you calculate the volume of the first aquarium.
1st aquarium:
V = L x W x H
V = 8 x 9 x 13
V = 72 x 13
V = 936 in.
Rate: 936 in./2 min.
Now that you've got the volume and rate of the first aquarium, you can find how many inches of the aquarium is filled within a minute, which is also known as the unit rate. To do that, you have to divide both the numerator and denominator by their least common multiple, which is 2. 936 divided by 2 is 468 and 2 divided by 2 is 1.
So the unit rate is 468 in./1 min. Now that you've got the unit rate, you can find out how long it'll take to fill the second aquarium up by finding its volume first.
2nd aquarium:
V = L x W x H
V = 21 x 29 x 30
V = 609 x 30
V 18,270 inches
Calculations:
Now, you divide 18,270 by 468 to find how many minutes it will take to fill up the second aquarium. 18,270 divided by 468 is about 39 (the answer wasn't exact, so I said "about").
 
2nd aquarium's rate:
18,270 in./39 min.
As a result, it'll take about 39 minutes to fill up an aquarium measuring 21 inches by 29 inches by 30 inches using the same hose. I really hope I helped and that you understood my explanation! :) If I didn't, I'm sorry. I tried. :(
        
             
        
        
        
You can find the degree classification by what is the greatest power shown in the polynomial. In this case, your answer is 2. Remember, it will be easier to find the degree when you order the terms from greatest to least by powers.