Answer: Last Option
![4x^5\sqrt[3]{3x}](https://tex.z-dn.net/?f=4x%5E5%5Csqrt%5B3%5D%7B3x%7D)
Step-by-step explanation:
To make the product of these expressions you must use the property of multiplication of roots:
![\sqrt[n]{x^m}*\sqrt[n]{x^b} = \sqrt[n]{x^{m+b}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%5Em%7D%2A%5Csqrt%5Bn%5D%7Bx%5Eb%7D%20%3D%20%5Csqrt%5Bn%5D%7Bx%5E%7Bm%2Bb%7D%7D)
we also know that:
![\sqrt[3]{x^3} = x](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E3%7D%20%3D%20x)
So
![\sqrt[3]{16x^7}*\sqrt[3]{12x^9}\\\\\sqrt[3]{16x^3x^3x}*\sqrt[3]{12(x^3)^3}\\\\x^2\sqrt[3]{16x}*x^3\sqrt[3]{12}\\\\x^5\sqrt[3]{16x*12}\\\\x^5\sqrt[3]{2^4x*2^2*3}\\\\x^5\sqrt[3]{2^6x*3}\\\\4x^5\sqrt[3]{3x}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B16x%5E7%7D%2A%5Csqrt%5B3%5D%7B12x%5E9%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7B16x%5E3x%5E3x%7D%2A%5Csqrt%5B3%5D%7B12%28x%5E3%29%5E3%7D%5C%5C%5C%5Cx%5E2%5Csqrt%5B3%5D%7B16x%7D%2Ax%5E3%5Csqrt%5B3%5D%7B12%7D%5C%5C%5C%5Cx%5E5%5Csqrt%5B3%5D%7B16x%2A12%7D%5C%5C%5C%5Cx%5E5%5Csqrt%5B3%5D%7B2%5E4x%2A2%5E2%2A3%7D%5C%5C%5C%5Cx%5E5%5Csqrt%5B3%5D%7B2%5E6x%2A3%7D%5C%5C%5C%5C4x%5E5%5Csqrt%5B3%5D%7B3x%7D)
5a+3b
5(2)+3(4)
10+12
22
(5+a)(3+b)
(5+2)(3+4)
(7)(7)
49
The order of the steps differ for the two expressions because for the first expression, you multiply 5a and 3b first. Then, you add them together. However, for the second expression, you add what's inside the parenthesis first then multiply them. So, the order of the steps is the opposite of the other expression.
Example of integers are -5 ,1 ,5 , 8 , 97 and 3,043