Answer:
<u>Option b. (x = 3, y = 20, z = -14)</u>
Step-by-step explanation:
Given:
2x + 2y + 3z = 4
5x + 3y + 5z = 5
3x + 4y + 6z = 5
Solve using Cramer’s rule
∴ ![\left[\begin{array}{ccc}2&2&3\\5&3&5\\3&4&6\end{array}\right] =\left[\begin{array}{ccc}4\\5\\5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%262%263%5C%5C5%263%265%5C%5C3%264%266%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%5C%5C5%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
∴A = ![\left[\begin{array}{ccc}2&2&3\\5&3&5\\3&4&6\end{array}\right] = -1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%262%263%5C%5C5%263%265%5C%5C3%264%266%5Cend%7Barray%7D%5Cright%5D%20%3D%20-1)
Ax = ![\left[\begin{array}{ccc}4&2&3\\5&3&5\\5&4&6\end{array}\right] = -3](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%262%263%5C%5C5%263%265%5C%5C5%264%266%5Cend%7Barray%7D%5Cright%5D%20%3D%20-3)
Ay = ![\left[\begin{array}{ccc}2&4&3\\5&5&5\\3&5&6\end{array}\right] =-20\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%264%263%5C%5C5%265%265%5C%5C3%265%266%5Cend%7Barray%7D%5Cright%5D%20%3D-20%5C%5C)
Az = ![\left[\begin{array}{ccc}2&2&4\\5&3&5\\3&4&5\end{array}\right] = 14](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%262%264%5C%5C5%263%265%5C%5C3%264%265%5Cend%7Barray%7D%5Cright%5D%20%3D%2014)
∴ x = Ax/A = -3/-1 = 3
y = Ay/A = -20/-1 = 20
z = Az/A = 14/-1 = -14
<u>So, the answer is option b. (x = 3, y = 20, z = -14)</u>
Elimination:
7x - 3y = 20
5x + 3y = 16
(add)
12x = 36
÷ 12
x = 3
(5 × 3) + 3y = 16
15 + 3y = 16
- 15
3y = 1
÷ 3
y = 1/3
Substitution:
5x + 3y = 16
- 3y
5x = 16 - 3y
÷ 5
x = 3.2 - 0.6y
5(3.2 - 0.6y) + 3y = 16
16 - 3y + 3y = 16
16 = 16
- 16
6y = 0
÷ 6
y = 0
Sorry the substitution messed up for some reason, I'll fix it after I've answered the other question
O wpuld say that d is correct
Two equivalent fractions would be 8/10
and 12/15<span />
Answer:
Option B. A = (5/6)^-⅛
Step-by-step explanation:
From the question given above, we obtained:
(5/6)ˣ = A¯⁸ˣ
We can obtain the value of A as follow:
(5/6)ˣ = A¯⁸ˣ
Cancel x from both side
5/6 = A¯⁸
Recall:
M¯ⁿ = 1/Mⁿ
A¯⁸ = 1/A⁸
Thus,
5/6 = 1/A⁸
Cross multiply
5 × A⁸ = 6
Divide both side by 5
A⁸ = 6/5
Take the 8th root of both sides
A = ⁸√(6/5)
Recall
ⁿ√M = M^1/n
Thus,
⁸√(6/5) = (6/5)^⅛
Therefore,
A = (6/5)^⅛
Recall:
(A/B)ⁿ = (B/A)¯ⁿ
(6/5)^⅛ = (5/6)^-⅛
Therefore,
A = (5/6)^-⅛