Answer:
43-7i
Step-by-step explanation:
We are given the expression:

First, expand 3-4i in 6i+7. To expand binomial with binomial, first we expand 3 in 6i+7 then expand -4i in 6i+7.
![\displaystyle \large{[(3 \cdot 6i) + (3 \cdot 7) + ( - 4i \cdot 6i) + ( - 4i \cdot 7)]- (2 - 3i)} \\ \displaystyle \large{[18i + 21 - 24 {i}^{2} - 28i]- (2 - 3i)}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Clarge%7B%5B%283%20%5Ccdot%206i%29%20%2B%20%283%20%5Ccdot%207%29%20%2B%20%28%20-%204i%20%5Ccdot%206i%29%20%2B%20%28%20-%204i%20%5Ccdot%207%29%5D-%20%282%20-%203i%29%7D%20%20%5C%5C%20%20%5Cdisplaystyle%20%5Clarge%7B%5B18i%20%2B%2021%20%20-%2024%20%7Bi%7D%5E%7B2%7D%20%20-%2028i%5D-%20%282%20-%203i%29%7D%20)
Now combine like terms.
![\displaystyle \large{[ - 10i+ 21 - 24 {i}^{2} ]- (2 - 3i)}](https://tex.z-dn.net/?f=%20%20%5Cdisplaystyle%20%5Clarge%7B%5B%20-%2010i%2B%2021%20%20-%2024%20%7Bi%7D%5E%7B2%7D%20%5D-%20%282%20-%203i%29%7D%20)
<u>I</u><u>m</u><u>a</u><u>g</u><u>i</u><u>n</u><u>a</u><u>r</u><u>y</u><u> </u><u>U</u><u>n</u><u>i</u><u>t</u>

Therefore:-
![\displaystyle \large{[ - 10i+ 21 - 24 ( - 1) ]- (2 - 3i)} \\ \displaystyle \large{[ - 10i+ 21 + 24]- (2 - 3i)} \\ \displaystyle \large{[ - 10i+ 45]- (2 - 3i)}](https://tex.z-dn.net/?f=%20%20%5Cdisplaystyle%20%5Clarge%7B%5B%20-%2010i%2B%2021%20%20-%2024%20%20%28%20-%201%29%20%5D-%20%282%20-%203i%29%7D%20%20%5C%5C%20%20%20%5Cdisplaystyle%20%5Clarge%7B%5B%20-%2010i%2B%2021%20%20%20%2B%2024%5D-%20%282%20-%203i%29%7D%20%20%5C%5C%20%20%20%5Cdisplaystyle%20%5Clarge%7B%5B%20-%2010i%2B%2045%5D-%20%282%20-%203i%29%7D%20)
Then expand negative sign in 2-3i; remember that negative times negative is positive and negative times positive is negative.

Combine like terms.

X/7 = 6/4.2
4.2x = 42
x= 10
Answer:
I would say 3
Step-by-step explanation:
ABC is a scaled down triangle of AED
Have an amazing day!
Please rate!
The possible value of the third length is an illustration of Triangle inequality theorem
The possible third lengths are 4 units and 6 units
<h3>How to determine the possible length of the third side?</h3>
To determine the third length, we make use of the following Triangle inequality theorem.
a + b > c
Let the third side be x.
So, we have:
x + 6 > 3
x + 3 > 6
3 + 6 > x
Solve the inequalities
x > -3
x > 3
x < 9
Remove the negative inequality value.
So, we have:
x > 3 or x < 9
Rewrite as:
3 < x or x < 9
Combine the inequality
3 < x < 9
This means that the possible value of the third length is between 3 and 9 (exclusive)
Hence, the possible third lengths are 4 units and 6 units
Read more about Triangle inequality theorem at:
brainly.com/question/2403556
Answer:
Step-by-step explanation:
Triangle DEF is a right angle triangle.
From the given right angle triangle,
DE represents the hypotenuse of the right angle triangle.
With ∠E as the reference angle,
EF represents the adjacent side of the right angle triangle.
DF represents the opposite side of the right angle triangle.
To determine EF, we would apply
trigonometric ratio
Cos θ = opposite side/hypotenuse. Therefore,
Cos 49 = EF/8
EF = 8Cos49 = 8 × 0.6561
EF = 5.2488
Rounding to the nearest tenth, it becomes 5.2