Answer:
P-value = 0.4846
Step-by-step explanation:
We are given the following in the question:
Population mean, μ = 4.73
Sample mean,
= 4.35
Sample size, n = 51
Alpha, α = 0.05
Sample standard deviation, s = 3.88
First, we design the null and the alternate hypothesis
We use Two-tailed z test to perform this hypothesis.
Formula:
Putting all the values, we have
Now,
We can calculate the p-value with the help of standard normal table.
P-value = 0.4846
Since the p-value is higher than the significance level, we fail to reject the null hypothesis and accept it.
We conclude that this college has same drinking habit as the college students in general.
It’s 5,905 bc you need to add all of you distilled water to know if you have enough
Answer:
4x² (3x - 1)
Step-by-step explanation:
12x³ - 4x²
4x² (3x - 1)
Answer:
a)0.08 , b)0.4 , C) i)0.84 , ii)0.56
Step-by-step explanation:
Given data
P(A) = professor arrives on time
P(A) = 0.8
P(B) = Student aarive on time
P(B) = 0.6
According to the question A & B are Independent
P(A∩B) = P(A) . P(B)
Therefore
&
is also independent
= 1-0.8 = 0.2
= 1-0.6 = 0.4
part a)
Probability of both student and the professor are late
P(A'∩B') = P(A') . P(B') (only for independent cases)
= 0.2 x 0.4
= 0.08
Part b)
The probability that the student is late given that the professor is on time
=
=
= 0.4
Part c)
Assume the events are not independent
Given Data
P
= 0.4
=
= 0.4

= 0.4 x P
= 0.4 x 0.4 = 0.16
= 0.16
i)
The probability that at least one of them is on time
= 1-
= 1 - 0.16 = 0.84
ii)The probability that they are both on time
P
= 1 -
= 1 - ![[P({A}')+P({B}') - P({A}'\cap {B}')]](https://tex.z-dn.net/?f=%5BP%28%7BA%7D%27%29%2BP%28%7BB%7D%27%29%20-%20P%28%7BA%7D%27%5Ccap%20%7BB%7D%27%29%5D)
= 1 - [0.2+0.4-0.16] = 1-0.44 = 0.56