Answer: "homeostasis" .
_________________________________________________
Griffith's experiment worked with two types of pneumococcal bacteria (a rough type and a smooth type) and identified that a "transforming principle" could transform them from one type to another.
At first, bacteriologists suspected the transforming factor was a protein. The "transforming principle" could be precipitated with alcohol, which showed that it was not a carbohydrate. But Avery and McCarty observed that proteases (enzymes that degrade proteins) did not destroy the transforming principle. Neither did lipases (enzymes that digest lipids). Later they found that the transforming substance was made of nucleic acids but ribonuclease (which digests RNA) did not inactivate the substance. By this method, they were able to obtain small amounts of highly purified transforming principle, which they could then analyze through other tests to determine its identity, which corresponded to DNA.
Answer:
The correct answer is b.Amplify the gene using PCR. Insert the gene into a plasmid vector. Transform the vector into the bacteria.
Explanation:
If I have a very small amount of gene for a fluorescent protein than the first step is to amplify the gene so that appropriate protein can be produced. PCR is the instrument that is used to amplify the protein.
So after amplification of the gene, the plasmid vector will be used in which the gene will be inserted because the plasmid vector is used to insert this gene in host cells where protein will be expressed.
The final step will be to transform bacteria with recombinant plasmid so that plasmid can make its copy and express a fluorescent protein in bulk.
This book describes how control of distributed systems can be advanced by an integration of control, communication, and computation. The global control objectives are met by judicious combinations of local and nonlocal observations taking advantage of various forms of communication exchanges between distributed controllers. Control architectures are considered according to increasing degrees of cooperation of local controllers: fully distributed or decentralized control, control with communication between controllers, coordination control, and multilevel control. The book covers also topics bridging computer science, communication, and control, like communication for control of networks, average consensus for distributed systems, and modeling and verification of discrete and of hybrid systems.
Examples and case studies are introduced in the first part of the text and developed throughout the book. They include:
<span>control of underwater vehicles,automated-guided vehicles on a container terminal,control of a printer as a complex machine, andcontrol of an electric power system.</span>
The book is composed of short essays each within eight pages, including suggestions and references for further research and reading.
By reading the essays collected in the book Coordination Control of Distributed Systems, graduate students and post-docs will be introduced to the research frontiers in control of decentralized and of distributed systems. Control theorists and practitioners with backgrounds in electrical, mechanical, civil and aerospace engineering will find in the book information and inspiration to transfer to their fields of interest the state-of-art in coordination control.
Answer: No, mRNA ( messenger RNA) model does not closely resemble the DNA strand from which it is transcribed.
This is because mRNA strand is complementary to the strand of DNA template that is used in its synthesis during the process called transcription. The polarity of DNA template is 3' to 5' whereas that of mRNA transcribed is 5' to 3' that is both the strands have antiparallel polarity.
This is the reason template DNA is referred antisense. mRNA strand more closely resembles the sense strand ( which is complementary strand of DNA template in a double helix).