Answer:
66.46
Step-by-step explanation:
The total of how many pieces you have
The picture is not clear. let me assume
y = (x^4)ln(x^3)
product rule :
d f(x)g(x) = f(x) dg(x) + g(x) df(x)
dy/dx = (x^4)d[ln(x^3)/dx] + d[(x^4)/dx] ln(x^3)
= (x^4)d[ln(x^3)/dx] + 4(x^3) ln(x^3)
look at d[ln(x^3)/dx]
d[ln(x^3)/dx]
= d[ln(x^3)/dx][d(x^3)/d(x^3)]
= d[ln(x^3)/d(x^3)][d(x^3)/dx]
= [1/(x^3)][3x^2] = 3/x
... chain rule (in detail)
end up with
dy/dx = (x^4)[3/x] + 4(x^3) ln(x^3)
= x^3[3 + 4ln(x^3)]
The given complex number is ⇒ z = a + b i
The absolute value of z = √( a² + b² ) = 3.28
So, we will check which of the options will give 3.28
<span>( A) IF ⇒⇒ a=1.5 and b=1.7
</span>
<span>∴ √( a² + b² ) = √( 1.5² + 1.7²) = √5.14 ≈ 2.27
</span>
===================================
<span>(B) IF ⇒⇒ a=1.5 and b=3.3
</span>
<span>∴ √( a² + b² ) = √(1.5² + 3.3²) = √13.14 ≈ 3.62
</span>
====================================
<span>(C) IF ⇒⇒ a=1.7 and b=2.8
</span>
<span>∴ √( a² + b² ) = √(1.7² + 2.8²) = √10.73 ≈ 3.28
</span>
====================================
<span>(D) IF ⇒⇒ a=2.8 and b=3.3
</span>
∴ √( a² + b² ) = √(2.8² + 3.3²) = √18.73 ≈ 4.33
=====================================
So, the correct answer is option (C) <span>a=1.7,b=2.8</span>
Answer:
The question is asking which numbers are larger with respect to one another. An easy way to do this is to convert to decimals, or just memorize it. 1/2=0.5, 3/4=0.75, 2/3=0.666666. So descending order (largest to smallest) 3/4, 2/3, 1/2.