Answer:
The sum of the first 650 terms of the given arithmetic sequence is 2,322,775
Step-by-step explanation:
The first term here is 4
while the nth term would be ai = a(i-1) + 11
Kindly note that i and 1 are subscript of a
Mathematically, the sum of n terms of an arithmetic sequence can be calculated using the formula
Sn = n/2[2a + (n-1)d)
Here, our n is 650, a is 4, d is the difference between two successive terms which is 11.
Plugging these values, we have
Sn = (650/2) (2(4) + (650-1)11)
Sn = 325(8 + 7,139)
Sn = 325(7,147)
Sn = 2,322,775
X= 75
the equation is
is/of %/100
48 = is
64 = %
X = of
100 = 100
48 X 100 = 4,800
64 X x = 64x
64x / 64 = x
4800 / 64 = 75
<span>SO... x = 75</span>
T = total cost for music school
L = # of lessons
T = $1,190 + ($40 × L)
T = $1,190 + ($40 × 12)
T. = $1,190 + $480
T = $ 1,670 for 12 lessons