Answer: Option A is correct. They eat consumers which ate plants, which absorb it from soil.
Explanation:
Carnivores get nitrogen from the food they eat or consuming nitrogen from the small insects trapped in plant. They eat consumers which in turn eat plants and absorb nitrogen from the soil.
The system of classification relates to the diversity of species because the system of classification is how we organize the diversity of species. With out it we would have a hard time trying to determine which animals belong with which group. There would be no order, just chaos of trying to determine animal likeness of one another.
To cut this answer short, it helps them organize organisms.
Answer:
The answer is b. Both of them are characterized by selective permeability.
Explanation:
- Option a. states that both, the nuclear and the cell membrane have two layers. This is only true for the nuclear membrane that consists of two lipid bilayers whereas the plasma membrane only contains one layer.
- c. Only the nuclear membrane has nuclear pores that connect the two bilayers. The pores act as protein channels or passages that allow transport of materials. The cell membrane does contain channel proteins or transmembrane proteins but not protein channels.
- d. The nuclear membrane separates nuclear contents from the cytoplasm whereas the cell membrane separates cellular contents from the extracellular environment.
Answer:
Increase.
Explanation:
More predators more need for food more deaths for rabbits
Answer:
Results
We systematically analyze and compare how different modelling methodologies can be used to describe translation. We define various statistically equivalent codon-based simulation algorithms and analyze the importance of the update rule in determining the steady state, an aspect often neglected. Then a novel probabilistic Boolean network (PBN) model is proposed for modelling translation, which enjoys an exact numerical solution. This solution matches those of numerical simulation from other methods and acts as a complementary tool to analytical approximations and simulations. The advantages and limitations of various codon-based models are compared, and illustrated by examples with real biological complexities such as slow codons, premature termination and feedback regulation. Our studies reveal that while different models gives broadly similiar trends in many cases, important differences also arise and can be clearly seen, in the dependence of the translation rate on different parameters. Furthermore, the update rule affects the steady state solution.
Conclusions
The codon-based models are based on different levels of abstraction. Our analysis suggests that a multiple model approach to understanding translation allows one to ascertain which aspects of the conclusions are robust with respect to the choice of modelling methodology, and when (and why) important differences may arise. This approach also allows for an optimal use of analysis tools, which is especially important when additional complexities or regulatory mechanisms are included. This approach can provide a robust platform for dissecting translation, and results in an improved predictive framework for applications in systems and synthetic biology.
hope it help friends