Answer: f(0) = 5.5 f(2) = 3.7
<u>Step-by-step explanation:</u>

When x = 0, f(x) = 5.5 <em>In other words, f(0) = 5.5</em>
When x = 2, f(x) = 3.7 <em>In other words, f(2) = 3.7</em>
Decimal= 0.22
44÷200=0.22
Fraction= 11/50
44/200÷2= 22/100
22/100÷2= 11/50
The mean of the given sample data is 210, and the standard deviation is 7.937.
Given size 'n' = 300
The population proportion 'p' = 0.7
Let 'x' be the random variable of the binomial distribution
a) mean of the binomial distribution = n p = 300 × 0.7
μ = 210
b) variance of the binomial distribution
⇒ n p q
⇒ 300 × 0.7 ×0.3
⇒ σ² = 63
The standard deviation of the binomial distribution:
⇒ √n p q = √63 = 7.937
Thus, the mean of the given sample data is 210, and the standard deviation is 7.937.
Learn more about the standard deviation here:
brainly.com/question/16555520
#SPJ1
The question seems to be incomplete the correct question would be:
describe the sampling of p hat. Assume that the size of the population is 25000 n= 300 p=0.7 a) Determine the mean of the sampling distributionb) Dtermine the standard deviation of the sampling distribution
Answer:
79.91% of loaves are between 26.94 and 32.18 centimeters
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

What percentage of loaves are between 26.94 and 32.18 centimeters
This is the pvalue of Z when X = 32.18 subtracted by the pvalue of Z when X = 26.94.
X = 32.18:



has a pvalue of 0.8621
X = 26.94:



has a pvalue of 0.0630
0.8621 - 0.0630 = 0.7991
79.91% of loaves are between 26.94 and 32.18 centimeters
The answer if I have come up with is t = t/10