Answer:

Step-by-step explanation:
Sample Space for the Cube, A={1,2,3,4,5,6}
n(A)=6
Even Numbers in A={2,4,6}
Sample Space for the Cards, B={1,2,3,4,5}
n(B)=5
Even numbers in the card,B= {2,4}
The two events are INDEPENDENT Events as the outcome of the cube does not affect the card picked, therefore:
P(A and B)=P(A) X P(B)
=
=
Six billion six hundred fifty-one million two-hundred ninety-seven thousand.
6,651,297,000 rounded to nearest hundred million = 6,700,000,000
Answer:
k = 6.
Step-by-step explanation:
k = 6
2k = 12
12 - 6 - 3 = 3
k = 1
2k = 2
2 - 6 - 3 = -7
So, the answer is k = 6 because it makes more sense.
Answer:
20 m
Step-by-step explanation:
Here, we will take,
The distance from top of the building to the tip of the shadow = Hypotenuse = 37 m
The length of shadow of the building = base = 32 m
let, height of the building = perpendicular = p
According to the Pythagoras Theorem,
(Hypotenuse)² = (Base)² + (Perpendicular)²
<em>h</em><em>²</em><em> </em><em>=</em><em> </em><em>b²</em><em> </em><em>+</em><em> </em><em>p²</em>
<em>p²</em><em> </em><em>=</em><em> </em><em>h²</em><em> </em><em>-</em><em> </em><em>b</em><em>²</em>
<em>p²</em><em> </em><em>=</em><em> </em><em>37</em><em>²</em><em> </em><em>-</em><em> </em><em>32</em><em>²</em><em> </em>
<em>p²</em><em> </em><em>=</em><em> </em><em>1</em><em>3</em><em>6</em><em>9</em><em> </em><em>-</em><em> </em><em>1</em><em>0</em><em>2</em><em>4</em>
<em>p²</em><em> </em><em>=</em><em> </em><em>34</em><em>5</em>
<em>p </em><em>=</em><em> </em><em>1</em><em>8</em><em>.</em><em>5</em><em>7</em>
and if we round the solution to nearest tenth it will be 20.
<u>Hence,</u><u> </u><u>height </u><u>of </u><u>the </u><u>building </u><u>is </u><u>2</u><u>0</u><u> </u><u>m.</u>
Answer:
- yes, as written
- no, as simplified
Step-by-step explanation:
The equation can be simplified by subtracting 2x² from both sides. Doing that leaves a linear (not quadratic) equation:
y = 3x
__
A quadratic equation is a polynomial equation such that the exponents of the variables in a term have a maximum total of 2. Here, the terms 2x² match that requirement, making this a quadratic equation.