Leeeeeeeeeeewweewpwppwoww
Answer:
The smallest positive integer solution to the given system of congruences is 30.
Step-by-step explanation:
The given system of congruences is


where, m and n are positive integers.
It means, if the number divided by 5, then remainder is 0 and if the same number is divided by 11, then the remainder is 8. It can be defined as



Now, we can say that m>n because m and n are positive integers.
For n=1,


19 is not divisible by 5 so m is not an integer for n=1.
For n=2,



The value of m is 6 and the value of n is 2. So the smallest positive integer solution to the given system of congruences is

Therefore the smallest positive integer solution to the given system of congruences is 30.
Where’s the rest of the question??
the answer is 20 because the lowest number they can all mulitply to is 20
F(x) = ax + b
Usa-se a informacao dada para criar um sistema de 2 equacoes com 2 variaveis. Resolve-se o sistema pare determinar os valores de a e b.Uma vez que se sabe os valores de a e b, escreve-se a funcao f com os valores de a e b. Finalmente calcucla-se f(3) usando a funcao f.
f(-1) = 3
a(-1) + b = 3
f(1) = -1
a(1) + b = -1
O sistema de equacoes e o seguinte.
Resolvemo-lo par adicao.
A variavel a e eliminada.
-a + b = 3
a + b = -1
2b = 2
b = 1
a + 1 = -1
a = -2
Agora sabemos the a = -2 e b = 1.
Escrevemos a funcao f usando os valores the a e b calculados..
f(x) = -2x + 1
f(3) = -2(3) + 1 = -6 + 1 = -5
f(3) = -5