Answer:
The answer is 6.8 meters.
Explanation:
During the S phase of the cell replication, the DNA is doubled before the division of the cell which means that it is twice it's original length.
At 0.34 nanometers, 3 billion base pairs (3.000.000.000) comes up to 3.4 meters and during the S phase the length is doubled so it is 6.8 meters long.
I hope this answer helps.
arbon, as with many elements, can arrange its atoms into several different geometries, or "allotropes." In pure diamond, every carbon atom is covalently bonded to exactly 4 other carbon atoms in a very specific and energetically favorable geometry. The diamond cannot be broken or scratched unless many covalent bonds are broken, which is difficult to do. In another common allotrope, graphite, every carbon atom is covalently bonded to only 3 other carbon atoms, and the atoms are arranged in sheets that are not covalently bonded to each other. The sheets can be broken apart easily, ultimately meaning that graphite can be easily scratched. Coal is composed of particles of different allotropes of carbon, and some "amorphous carbon," which has no defined geometry in its atomic structure. Without a continuous network of covalent bonds, coal is easily scratched (i.e. it is not hard).
Answer:
B. They have a single small nucleus.
Explanation:
The presence of large nucleus is a characteristic feature of cells that frequently undergo cell division. Cancer cells are characterized by uncontrolled continuous cell division even when the new cells are not required by the body.
This leads to the formation of benign or metastatic tumors. To undergo continuous cell division, the cancer cells have a large nucleus. The nucleus of the cancer cells is mostly hyperchromatic and distinct due to higher nuclear to cytoplasmic ratio. It allows these cells to exhibit the uncontrolled cell division.
Absorb and transport solar energy